\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{2017}+\sqrt{2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.........+\frac{1}{\sqrt{2017}+\sqrt{2018}}\)

\(=\frac{2-1}{\sqrt{1}+\sqrt{2}}+\frac{3-2}{\sqrt{2}+\sqrt{3}}+........+\frac{2018-2017}{\sqrt{2017}+\sqrt{2018}}\)

\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{1}+\sqrt{2}}+\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}}+......+\)

\(\frac{\left(\sqrt{2018}-\sqrt{2017}\right)\left(\sqrt{2018}+\sqrt{2017}\right)}{\sqrt{2017}+\sqrt{2018}}\)

\(=\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+........+\left(\sqrt{2018}-\sqrt{2017}\right)\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+......+\sqrt{2018}-\sqrt{2017}\)

\(=-\sqrt{1}+\sqrt{2018}=\sqrt{2018}-\sqrt{1}\)

27 tháng 6 2018

\(=\frac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{3}+\sqrt{4}\right)\left(\sqrt{4}-\sqrt{3}\right)}+...+\frac{\sqrt{2018}-\sqrt{2017}}{\left(\sqrt{2017}+\sqrt{2018}\right)\left(\sqrt{2018}-\sqrt{2017}\right)}\)

\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{2018}-\sqrt{2017}}{2018-2017}\)

\(=\frac{\sqrt{2}-1}{1}+\frac{\sqrt{3}-\sqrt{2}}{1}+\frac{\sqrt{4}-\sqrt{3}}{1}+...+\frac{\sqrt{2018}-\sqrt{2017}}{1}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2018}-\sqrt{2017}=\sqrt{2018}-1\)

27 tháng 6 2018

\(=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2017}+\sqrt{2018}}\)

\(=-\sqrt{1}+\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2018}\)

\(=-\left(\sqrt{1}+\sqrt{2018}\right)\)

DD
5 tháng 12 2020

\(\frac{1}{\sqrt{2k+1+2\sqrt{k^2+k}}}=\frac{1}{\sqrt{k+1+2\sqrt{k\left(k+1\right)}+k}}=\frac{1}{\sqrt{k+1}+\sqrt{k}}\)

\(=\frac{\sqrt{k+1}-\sqrt{k}}{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)

Do đó ta có: 

\(A=\frac{1}{\sqrt{3+2\sqrt{2}}}+...+\frac{1}{\sqrt{2n+1+2\sqrt{n^2+n}}}\)

\(A=\sqrt{2}-\sqrt{1}+...+\sqrt{n+1}-\sqrt{n}\)

\(A=\sqrt{n+1}-1\)

Với \(n=2018\)ta có: \(A=\sqrt{2019}-1\).