K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2020

Ta có : \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

\(x^2+x=x\left(x+1\right)\)

\(x^2+x+1=x^2+x+1\)

MTC : \(x\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\)

Quy đồng :  

\(\frac{x}{x^3-1}=\frac{x}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)

\(\frac{x+1}{x^2+x}=\frac{x+1}{x\left(x+1\right)}=\frac{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}{x\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{x-1}{x^2+x+1}=\frac{\left(x-1\right)^2\left(x+1\right)x}{x\left(x+1\right)\left(x^2+x+1\right)\left(x-1\right)}\)

8 tháng 12 2020

\(\frac{x}{x^3-1};\frac{x+1}{x^2+x};\frac{x-1}{x^2+x+1}\)

Ta có:\(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

         \(x^2+x=x\left(x+1\right)\)

        \(x^2+x+1=x^2+x+1\)

\(\Rightarrow MTC=x\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\)

Quy đồng:

\(\frac{x}{x^3-1}=\frac{x}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x^2\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)

\(\frac{x+1}{x^2+x}=\frac{x+1}{x\left(x+1\right)}=\frac{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}{x\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{x-1}{x^2+x+1}=\frac{\left(x-1\right)^2x\left(x+1\right)}{x\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}\)

21 tháng 11 2017

a)

\(\dfrac{1}{x+2}=\dfrac{1}{2+x}\)

\(\dfrac{8}{2x-x^2}=\dfrac{-8}{-x\left(2+x\right)}=\dfrac{8}{x\left(2+x\right)}\)

MTC: \(x\left(2+x\right)\)

\(\dfrac{1}{x+2}=\dfrac{1}{2+x}=\dfrac{x}{x\left(2+x\right)}\)

\(\dfrac{8}{2x-x^2}=\dfrac{-8}{-x\left(2+x\right)}=\dfrac{8}{x\left(2+x\right)}\)

21 tháng 11 2017

b)

\(x^2+1=\dfrac{x^2+1}{1}\)

\(\dfrac{x^2}{x^2-1}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)

MTC: \(\left(x-1\right)\left(x+1\right)\)

\(x^2+1=\dfrac{x^2+1}{1}=\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(\dfrac{x^2}{x^2-1}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)

quy

đồng

cx

ko bt làm á

7 tháng 11 2017

Bài 1 . Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 3x - 10) ta được x+ 2

Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 7x + 10) ta được x - 2

Do đó , ta có :

\(\dfrac{1}{x^2+3x-10}=\dfrac{x+2}{\left(x^2+3x-10\right)\left(x+2\right)}=\dfrac{x+2}{x^3+5x^2-4x-20}\)

Và : \(\dfrac{x}{x^2+7x+10}=\dfrac{x\left(x-2\right)}{\left(x^2+7x+10\right)\left(x-2\right)}=\dfrac{x^2-2x}{x^3+5x^2-4x-20}\)

7 tháng 11 2017

Bài 2 . a) Ta có :

\(\dfrac{x-1}{x^3+1}\)( giữ nguyên)

\(\dfrac{2x}{x^2-x+1}=\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2+2x}{x^3+1}\)

\(\dfrac{2}{x+1}=\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2-2x+2}{x^3+1}\)

b) Ta có MTC = x2( y - z)2

Ta có :

\(\dfrac{x+y}{x\left(y-z\right)^2}=\dfrac{x^2+xy}{x^2\left(y-z\right)^2}\)

\(\dfrac{y}{x^2\left(y-z\right)^2}\)( giữ nguyên )

\(\dfrac{z}{x^2}=\dfrac{z\left(y-z\right)^2}{x^2\left(y-z\right)^2}\)