K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

\(P=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{399}{400}\)

\(\Rightarrow P< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{400}{401}\)

\(\Rightarrow P^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{399}{400}.\frac{400}{401}\)

\(\Rightarrow P^2< \frac{1}{401}< \frac{1}{400}=\frac{1}{20^2}\)

\(\Rightarrow P< \frac{1}{20}\)

9 tháng 5 2019

P=1/2.3/4.5/6.....399/400

=>P<2/3.4/5......400/401

=>P2<1/2.2/3.3/4......398/399.399/400.400/401

=1/401<1/400=(1/20)2

=>P<1/20

13 tháng 5 2019

\(P=\frac{1}{2}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}......\frac{399}{400}\)

\(P=\frac{1.3.4.5....399}{2.4.5.6.....400}\)

\(P=\frac{1.3}{2.400}\)

\(P=\frac{3}{800}\)

Vì \(\frac{3}{800}< \frac{40}{800}\)

\(\Rightarrow P< \frac{40}{800}\)

\(\Rightarrow P< \frac{1}{20}\left(đpcm\right)\)

13 tháng 5 2019

Ta co:

\(P=\frac{1}{2}.\frac{3.4.5...399}{4.5.6...400}\)

\(\Leftrightarrow P=\frac{1}{2}.\frac{3}{400}=\frac{3}{800}< \frac{3}{600}=\frac{1}{20}\)

\(\Rightarrow P< \frac{1}{20}\left(dpcm\right).\)

9 tháng 8 2016

\(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(D< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)

\(D^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)

\(D^2< \frac{1}{101}< \frac{1}{100}=\left(\frac{1}{10}\right)^2\)

=> \(D< \frac{1}{10}\left(đpcm\right)\)

9 tháng 8 2016

\(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(D< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)

\(D^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)

\(D^2< \frac{1}{101}< \frac{1}{100}=\left(\frac{1}{10}\right)^2\)

\(= >D< \frac{1}{10}\)

\(\text{k tui}\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)

Vậy \(A>\frac{1}{10}\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)

\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)

\(VayA>\frac{1}{100}=B\)