\(A=\frac{2}{x+\sqrt{x}+1}\)

giải hộ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

mẫu tách thành( căn x +1/2)2    +1/2   ta lại có Ư (2)={1;2;-1;-2}ừng

  xong rồi giải từng pt  với vế phải là Ư(2) xong ta có kết quả là....tự làm

18 tháng 10 2021

2\(\sqrt{x}\)thì làm được bạn nhé

18 tháng 10 2021

Trước tiên ta chứng minh:

\(x\sqrt{x}-3\sqrt{x}+3>0\)

\(\Leftrightarrow\left(x\sqrt{x}-2x+\sqrt{x}\right)+\left(2x-4\sqrt{x}+2\right)+1>0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)^2+2\left(\sqrt{x}-1\right)^2+1>0\)(đúng )

\(\Rightarrow A=\frac{\sqrt{x}}{x\sqrt{x}-3\sqrt{x}+3}\ge0\)

Ta chứng minh:

\(A=\frac{\sqrt{x}}{x\sqrt{x}-3\sqrt{x}+3}< 2\)

\(\Leftrightarrow2x\sqrt{x}-6\sqrt{x}+6-\sqrt{x}>0\)

\(\Leftrightarrow2x\sqrt{x}-7\sqrt{x}+6>0\)

\(\Leftrightarrow\left(2x\sqrt{x}-4x+2\right)+\left(4x-\frac{2.2.7}{4}\sqrt{x}+\frac{49}{16}\right)+\frac{47}{16}>0\)

\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}-1\right)^2+\left(2\sqrt{x}-\frac{7}{2}\right)^2+\frac{47}{16}>0\)(đúng )

Từ đây ta được: \(0\le A< 1\)

\(\Rightarrow A=\left\{0;1\right\}\)

Thế A vô tìm x nha. Cái nào thỏa mãn thì lụm không thì bỏ nha.

18 tháng 10 2021

Cái đoạn kia là: \(0\le A< 2\)nha

15 tháng 10 2016

Mình giải câu a thôi nha b,c,d tương tự

a/ để \(\frac{2}{x-1}\)nguyên thì x - 1 phải là ước nguyên của 2 hay (x - 1) = (-1, 1, -2, 2)

=> x = (0, 2, -1; 3)

22 tháng 12 2016

mình chịu

1 tháng 7 2019

Thuy Duong Nguyen đánh đề cẩn thận hơn bạn nhé

Lời giải :

a) ĐKXĐ : \(x\ne1\)

 \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+3\right)\left(2-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\frac{15\sqrt{x}-11-3x+6-7\sqrt{x}-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)

b) \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)

\(\Leftrightarrow\sqrt{x}=\sqrt{2}-1\)

Khi đó \(A=\frac{2-5\left(\sqrt{2}-1\right)}{\sqrt{2}-1+3}\)

\(A=\frac{2-5\sqrt{2}+5}{\sqrt{2}+2}=\frac{7-5\sqrt{2}}{\sqrt{2}+2}\)

c) \(A=\frac{1}{2}\)

\(\Leftrightarrow\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)

\(\Leftrightarrow2\left(2-5\sqrt{x}\right)=\sqrt{x}+3\)

\(\Leftrightarrow4-10\sqrt{x}-\sqrt{x}-3=0\)

\(\Leftrightarrow1-11\sqrt{x}=0\)

\(\Leftrightarrow11\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x}=\frac{1}{11}\)

\(\Leftrightarrow x=\frac{1}{121}\)( thỏa )

d) A nguyên \(\Leftrightarrow2-5\sqrt{x}⋮\sqrt{x}+3\)

\(\Leftrightarrow-5\left(\sqrt{x}+3\right)+17⋮\sqrt{x}+3\)

Vì \(-5\left(\sqrt{x}+3\right)⋮\sqrt{x}+3\)

\(\Rightarrow17⋮\sqrt{x}+3\)

\(\Rightarrow\sqrt{x}+3\inƯ\left(17\right)=\left\{17\right\}\)( vì \(\sqrt{x}+3\ge3\))

\(\Leftrightarrow\sqrt{x}=14\)

\(\Leftrightarrow x=196\)( thỏa )

Vậy....

\(a,ĐKXĐ:\orbr{\begin{cases}x+2\sqrt{x}+3\ne0\\\sqrt{x}+3\ne0\end{cases}}\)

\(\Leftrightarrow\orbr{ }\sqrt{x}\ne-3\)

Rút gọn: p/s: sau phân số thứ 2 ở mẫu ko có x à? Bạn chép đề sai?