K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
23 tháng 7 2021

\(x^2+y^2=z^2\)

Ta có: \(x^2+y^2-z^2-\left(x+y-z\right)=x\left(x-1\right)+y\left(y-1\right)-z\left(z-1\right)⋮2\)

nên \(\left(x^2+y^2-z^2\right)\equiv\left(x+y-z\right)\left(mod2\right)\)

suy ra \(x+y-z⋮2\Leftrightarrow x-y+3z⋮2\).

Mà \(x+3z-y>x+2z>2\)

Do đó \(x+3z-y\)là hợp số. 

28 tháng 3 2022

refer

https://olm.vn/hoi-dap/detail/1303479279140.html

DD
23 tháng 7 2021

\(x^2+y^2+z^2-\left(x+y+z\right)=x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\)

có \(x\left(x-1\right),y\left(y-1\right),z\left(z-1\right)\)là các tích của hai số nguyên liên tiếp nên chia hết cho \(2\)do đó 

\(\left(x+y+z\right)\equiv\left(x^2+y^2+z^2\right)\left(mod2\right)\)

\(\Rightarrow x+y+z⋮2\)(vì \(x^2+y^2+z^2⋮2\)

\(\Leftrightarrow x+7y+13z⋮2\).

Mà \(x+7y+13z>2\)(do \(x,y,z\)dương) 

nên \(x+7y+13z\)là hợp số. 

đề bài phải là x,y,z,t nguyên dương. 
Vì nếu cho x=z=1;y=t=0 thì thỏa mãn: x²+y²=z²+t² 
nhưng x+y+z+t = 2 là số nguyên tố. 

với x,y,z,t là số nguyên dương => x+y+z+t >=4 
giả sử x+y+z+t là số nguyên tố 
ta có x+y+z+t >= 4 => x+y+z+t lẽ 
=> trong x,y,z,t có một số lẽ số lẽ ( 1 hoặc 3 số lẽ ) 
* trường hợp 1: có 1 số lẽ, giả sử là x => x²+y² lẽ , còn z²+t² chẳn, vô lý vì chúng bằng nhau 
* trường hợp 2: có 3 số lẽ, 1 số chẳn, giả sử x chẳn. => x²+y² lẽ , còn z²+t² chẳn, vô lý. 
mọi trường hợp đều dẫn kết điều mâu thuẩn , vậy giả thiết phản chứng là sai và bài toán được chứng minh.

12 tháng 1 2020

Ta có:x2 + z2 = y2 + t2
Xét P = (x2 + z2 + y2 + t2) - (x + z + y + t)
          = (x2 - x) + (z2 - z) + (y2 - y) + (t2 - t)
          = x(x - 1) + z(z -1) + y(y -1) + t(t -1) chia hết cho 2
 (Vì tích của 2 số nguyên liên tiếp luôn chia hết cho 2)
Thay x2 + z2 = y2 + t2 vào P ta được:
P = 2(x2 + z2) - (x + y + z + t) chia hết cho 2
Mà 2(x2 + z2) chia hết cho 2 
=>x + y +z + t chia hết cho 2
Vì x,y,z,t nguyên dương nên x + y + z + t > 2
Suy ra x + y + z + t là hợp số
Chúc bn hc tốt
Chúc bn ăn Tết vui vẻ

16 tháng 3 2017

chưa học nên ko biết

27 tháng 11 2024

Ngáo đá

26 tháng 10 2020

Vì x,y,z là các số nguyên dương

nên áp dụng bất đẳng thức Cauchy ta có :

\(x+y\ge2\sqrt{xy}\)(1)

\(y+z\ge2\sqrt{yz}\)(2)

\(z+x\ge2\sqrt{zx}\)(3)

Nhân (1), (2) và (3) theo vế ta có :

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}=8\sqrt{xy\cdot yz\cdot zx}=8\sqrt{x^2y^2z^2}=8\left|xyz\right|=8xyz\)

( do x,y,z là các số nguyên dương )

Đẳng thức xảy ra <=> x = y = z

=> đpcm

3 tháng 6 2018

áp dụng BĐT AM-GM 

ta có \(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(z+x\ge2\sqrt{zx}\)

=>\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z\left(ĐPCM\right)}\)

12 tháng 4 2016

Câu 1: xy + x - y = 4

<=> (xy + x) - (y+ 1) = 3

<=> x(y+1) - (y + 1) = 3

<=> (y + 1) (x - 1) = 3

Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.

Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:

* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)

* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)

Vậy x = y = 2.

Câu 2:

Ta có:

 (a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0

Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c

5 tháng 3 2018

 \(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)