K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

a) Do tam giác ABC nội tiếp nên sẽ có 1 cạnh là đường kính (BC)

 Xét tam giác ABC có :\(AB^2+AC^2=\left(R\sqrt{2-\sqrt{3}}\right)^2+\left(R\sqrt{2+\sqrt{3}}\right)^2\)

                                                               \(=2R^2-R^2\sqrt{3}+2R^2+R^2\sqrt{3}\)

                                                                \(=4R^2\)

                                                                  \(=BC^2\)

( do BC là đường kính, BC=2R)

      Vậy tam giác ABC là tam giác vuông

17 tháng 11 2019

\(\sin B=\frac{AC}{BC}=\frac{R\sqrt{2+\sqrt{3}}}{2R}=\frac{\sqrt{2+\sqrt{3}}}{2}\)

suy ra góc B=75 độ

suy ra góc C=90 độ -75 độ =15 độ

22 tháng 9 2019

đề dư chỗ "gọi D, K là hình chiếu... AC" 

Có: \(\frac{AB.AC.BC}{4R}=\frac{1}{2}AH.BC\)\(\left(=S_{ABC}\right)\)

\(\Leftrightarrow\)\(\frac{AB.AC}{2R}=AH=\sqrt{2}R\)

\(\Leftrightarrow\)\(\frac{AB.AC}{2\sqrt{2}}=R^2\) ( là scp do R nguyên ) 

14 tháng 1 2017

Tổng quát cho câu 2 là định lí Ptolemy, như sau: Cho \(ABCD\) nội tiếp bất kì. Khi đó \(AC.BD=AB.CD+AD.BC\).


A B C D E

CM: Vẽ \(E\in AC\) sao cho \(\widehat{ABD}=\widehat{EBC}\).

Khi đó có hai tam giác sau đồng dạng \(ABD\) và \(EBC\)\(ABE\) và \(DBC\).

Suy ra tỉ lệ cạnh: \(\frac{AD}{EC}=\frac{BD}{BC}\) và \(\frac{AB}{DB}=\frac{AE}{DC}\).

Hay \(AD.BC=BD.EC\) và \(AB.DC=AE.DB\)

Cộng lại: \(AB.CD+AD.BC=BD\left(AE+EC\right)=AC.BD\)