Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do tam giác ABC nội tiếp nên sẽ có 1 cạnh là đường kính (BC)
Xét tam giác ABC có :\(AB^2+AC^2=\left(R\sqrt{2-\sqrt{3}}\right)^2+\left(R\sqrt{2+\sqrt{3}}\right)^2\)
\(=2R^2-R^2\sqrt{3}+2R^2+R^2\sqrt{3}\)
\(=4R^2\)
\(=BC^2\)
( do BC là đường kính, BC=2R)
Vậy tam giác ABC là tam giác vuông
\(\sin B=\frac{AC}{BC}=\frac{R\sqrt{2+\sqrt{3}}}{2R}=\frac{\sqrt{2+\sqrt{3}}}{2}\)
suy ra góc B=75 độ
suy ra góc C=90 độ -75 độ =15 độ
đề dư chỗ "gọi D, K là hình chiếu... AC"
Có: \(\frac{AB.AC.BC}{4R}=\frac{1}{2}AH.BC\)\(\left(=S_{ABC}\right)\)
\(\Leftrightarrow\)\(\frac{AB.AC}{2R}=AH=\sqrt{2}R\)
\(\Leftrightarrow\)\(\frac{AB.AC}{2\sqrt{2}}=R^2\) ( là scp do R nguyên )
Tổng quát cho câu 2 là định lí Ptolemy, như sau: Cho \(ABCD\) nội tiếp bất kì. Khi đó \(AC.BD=AB.CD+AD.BC\).
A B C D E
CM: Vẽ \(E\in AC\) sao cho \(\widehat{ABD}=\widehat{EBC}\).
Khi đó có hai tam giác sau đồng dạng \(ABD\) và \(EBC\), \(ABE\) và \(DBC\).
Suy ra tỉ lệ cạnh: \(\frac{AD}{EC}=\frac{BD}{BC}\) và \(\frac{AB}{DB}=\frac{AE}{DC}\).
Hay \(AD.BC=BD.EC\) và \(AB.DC=AE.DB\)
Cộng lại: \(AB.CD+AD.BC=BD\left(AE+EC\right)=AC.BD\)