K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 3 2020

Bài 1:

Các PT bậc nhất: a, c, e, f

a) $a=1; b=2$

c) $a=-12; b=1$

e) $a=4; b=-12$

f) $a=2; b=-4$

AH
Akai Haruma
Giáo viên
7 tháng 3 2020

Bài 2:

a) $(-2)^2-5(-2)+6\neq 0$ nên $x=-2$ không phải nghiệm của pt $x^2-5x+6=0$

Vậy $a$ sai

b) Đề không rõ ("S=F" là như thế nào vậy bạn)

c) $0x=0$ có vô số nghiệm $x\in\mathbb{R}$

Vậy $c$ sai

d) Đúng. Đây là pt ẩn $x$

e) Sai. Vì $ax+b=0$ là pt bậc nhất 1 ẩn khi mà $a\neq 0$

f) $9^2\neq 3$ nên $x^2=3$ không có nghiệm $x=9$

25 tháng 1 2017

1a,(1-x)(x+2)=0

=>1-x=0=>x=1

=>x+2=0=>x=-2

1b,(2x-2)(6+3x)(3x+2)=0

=>2x-2=0=>2(x-1)=0=>x=1

=>6+3x=0=>3x=-6=>x=-2

=>3x+2=0=>3x=-2=>x=-2/3

1c,(5x-5)(3x+2)(8x+4)(x^2-5)=0

=>5x-5=0=>5(x-1)=0=>x=1

=>3x+2=0=>x=-2/3

=>8x+4=0=>4(2x+1)=0=>2x+1=0=>2x=-1=>x=-1/2

=>x^2-5=0=>x^2=5=>x=\(+-\sqrt{5}\)

21 tháng 7 2017

Kéo dài DF cắt AB tại E như sau:

dap-an-bai-toan-hinh-hoc-lop-8-thach-thuc-tri-thong-minh-cua-ban-1
 

- Vì ABCD là hình thang nên AB , AE \(\backslash\backslash\) DC.

Suy ra, \(\widehat{EBF}=\widehat{DCF}\) (hai góc so le trong) 

          \(\widehat{BFE}=\widehat{CFD}\) (hai góc đối đỉnh).

Xét tam giác BEF và tam giác CDF có : \(\widehat{EBF}=\widehat{DCF}\) (cmt) 

                                                         BF = FC ( F là trung điểm của BC)

                                                         \(\widehat{BFE}=\widehat{CFD}\) (cmt)

Vậy . tam giác BEF = tam giác CDF

Suy ra : FE = FD  

Ta có : Diện tích hình ABDF +   Diện tích hình CDF = Diện tích hình ABCD 

          Diện tích hình ABDF +   Diện tích hình  BEF = Diện tích hình ADE

Mà : tam giác BEF = tam giác CDF

Suy ra : diện tích ABCD bằng diện tích tam giác ADE 

Với FE = FD, ta có hai tam giác ADF và AEF có đáy bằng nhau, cùng chung đường cao hạ từ A.

Suy ra, diện tích tam giác AFE bằng diện tích tam giác ADF.

Mà : diện tích tam giác AFE + diện tích tam giác ADF = diện tích tam giác ADE 

Nên diện tích tam giác ADE bằng hai lần diện tích tam giác AFD  và bằng : 2 x 10 = 20 cm2.

 1.Phép tính 32x+6−x−62x2+6x32x+6−x−62x2+6x có kết quả là:   A. −1x+3−1x+3  B. 1x+31x+3  C. 1x1x  D. −1x−1x  2.Hiệu của hai phân thức a+9ba2−9b2a+9ba2−9b2 và phân thức 3ba2+3ab3ba2+3ab là phân thức nào sau đây:   A. 1a1a.  B. a+3ba(a−3b)a+3ba(a−3b).  C. −a+3ba(a−3b)−a+3ba(a−3b).  D. 1a−3b1a−3b.  3.Thực hiện phép tính: 3x−64−9x2−13x−2+13x+23x−64−9x2−13x−2+13x+2được kết...
Đọc tiếp

 

1.

Phép tính 32x+6−x−62x2+6x32x+6−x−62x2+6x có kết quả là:

  

 A. −1x+3−1x+3 
 B. 1x+31x+3 
 C. 1x1x 
 D. −1x−1x 

 

2.

Hiệu của hai phân thức a+9ba2−9b2a+9ba2−9b2 và phân thức 3ba2+3ab3ba2+3ab là phân thức nào sau đây:

  

 A. 1a1a. 
 B. a+3ba(a−3b)a+3ba(a−3b). 
 C. −a+3ba(a−3b)−a+3ba(a−3b). 
 D. 1a−3b1a−3b. 

 

3.

Thực hiện phép tính: 3x−64−9x2−13x−2+13x+23x−64−9x2−13x−2+13x+2được kết quả là:

  

 A. 12x+312x+3 
 B. x−23x+2x−23x+2 
 C. −13x+2−13x+2 
 D. 13x−213x−2 

 

4.

Giá trị của biểu thức P=10(x+2)(3−x)−12(3−x)(x+3)−1(x+3)(x+2)P=10(x+2)(3−x)−12(3−x)(x+3)−1(x+3)(x+2)tại x = −34−34 là:

  

 A. 16451645. 
 B. −74−74. 
 C. −158−158. 
 D. 7474 

 

5.

Cho x+4x2−4−1x2+2x=Px+4x2−4−1x2+2x=P thì P bằng phân thức nào sau đây :

  

 A. x−1x(x−2)x−1x(x−2) 
 B. x2−3x−2x(x2−4)x2−3x−2x(x2−4) 
 C. x3+3x+2x(x2−4)x3+3x+2x(x2−4) 
 D. x+1x(x−2)x+1x(x−2) 

 

6.

Tổng hai phân thức 1−xx3−11−xx3−1và 1x2−x+11x2−x+1 bằng phân thức nào sau đây:

  

 A. 2(x−1)x3+12(x−1)x3+1. 
 B. 2−xx3+12−xx3+1. 
 C. 2+xx3+12+xx3+1. 
 D. 2x3+12x3+1 

 

7.

Giá trị của biểu thức P=4a2−3a+17a3−1+2a−1a2+a+1+61−aP=4a2−3a+17a3−1+2a−1a2+a+1+61−a tại a = −12−12 là:

  

 A. - 9 
 B. - 16 
 C. 16 
 D. 9 

 

8.

Tổng của các phân thức P: x2+2xy+4y2x2−9y2;x3y−x;y3y+xx2+2xy+4y2x2−9y2;x3y−x;y3y+xbằng phân thức nào sau đây:

  

 A. x2+y2x2−9y2x2+y2x2−9y2 
 B. y2x2−9y2y2x2−9y2 
 C. (x+y)2x2−9y2(x+y)2x2−9y2 
 D. 0 

 

9.

Tổng của các phân thức: x+2y2y2−xy,8xx2−4y2x+2y2y2−xy,8xx2−4y2và 2y−x2y2+xy2y−x2y2+xy là phân thức nào sau đây:

  

 A. 2(2x−y)x(2y+x)2(2x−y)x(2y+x) 
 B. 2(2y−x)y(2y+x)2(2y−x)y(2y+x). 
 C. 2y−xy(2y+x)2y−xy(2y+x). 
 D. 2(x−2y)y(2y+x)2(x−2y)y(2y+x). 

 

10.

Tổng của các phân thức ba2−b2,aa2+ab−2a−2bba2−b2,aa2+ab−2a−2b và 1a+b1a+b là:

  

 A. −2a2−2a+ab(a2−b2)(a−2)−2a2−2a+ab(a2−b2)(a−2). 
 B. 2a2−2a+ab(a2−b2)(2−a).2a2−2a+ab(a2−b2)(2−a). 
 C. 2a2+2a−ab(a2−b2)(a−2)2a2+2a−ab(a2−b2)(a−2) 
 D. 2a2−2a−ab(a2−b2)(a−2)2a2−2a−ab(a2−b2)(a−2). 
0
19 tháng 2 2020

ai biết được!

19 tháng 10 2023

\(C=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=\left(x^{16}-1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=\left(x^{32}-1\right)\left(x^{32}+1\right)-x^{64}\)

\(C=x^{64}-1-x^{64}\)

\(C=-1\)

Vậy gtri của C không phụ thuộc vào x 

5 tháng 3 2018

không phải số thì là số 2 

5 tháng 3 2018

tổng trên =9 

tổng dưới =9 

Nên ?=3 (mình nghĩ thế ) :))

22 tháng 8 2018

Ta có:\(\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)

với \(x=-10;y=2\) ,ta có:

\(\left(-10\right)^3-2^3=-1000-8=-1008\)

với \(x=-1;y=0\)

\(\left(-1\right)^3-0^3=-1-0=-1\)

với \(x=2;y=-1\) ,ta có:

\(2^3-\left(-1\right)^3=8-\left(-1\right)=8+1=9\)

với \(x=-0,5;y=1,25\), ta có:

\(\left(-0,5\right)^3-1,25^3=0-2=-2\)

Ta có bảng sau;

Giá trị của x và y

Giá trị của biểu thức

\(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(x=-10;y=2\) \(\left(x-y\right)\left(x^2+xy+y^2\right)=-1008\)
\(x=-1;y=0\) \(\left(x-y\right)\left(x^2+xy+y^2\right)=-1\)
\(x=2;y=-1\) \(\left(x-y\right)\left(x^2+xy+y^2\right)=9\)
\(x=-0,5;y=1,25\) \(\left(x-y\right)\left(x^2+xy+y^2\right)=-2\)
19 tháng 4 2017

Trước hết, ta làm tính nhân để rút gọn biểu thức, ta được:

(x - y)(x2 + xy + y2) = x . x2 + x . xy + x . y2 + (-y) . x2 + (-y) . xy + (-y) . y2

= x3 + x2y + xy2 – yx2 – xy2 – y3 = x3 – y3

Sau đó tính giá trị của biểu thức x3 – y3

Ta có:

Khi x = -10; y = 2 thì A = (-10)3 – 23 = -1000 – 8 = 1008

Khi x = -1; y = 0 thì A = (-1)3 – 03 = -1

Khi x = 2; y = -1 thì A = 23 – (-1)3 = 8 + 1 = 9

Khi x = -0,5; y = 1,15 thì
A = (-0,5)3 – 1,253 = -0,125 – 1.953125 = -2,078125