K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phép 1:

Ta có: \(3\cdot\sqrt{7-4\sqrt{3}}\)

\(=3\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)

\(=3\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=3\cdot\left|2-\sqrt{3}\right|\)

\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))

\(=6-3\sqrt{3}\)

Phép 2:

Ta có: \(\sqrt{11+4\sqrt{7}}\)

\(=\sqrt{7+2\cdot\sqrt{7}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{7}+2\right)^2}\)

\(=\left|\sqrt{7}+2\right|\)

\(=\sqrt{7}+2\)(Vì \(\sqrt{7}+2>0\))

Phép 3:

Ta có: \(2\cdot\sqrt{11-4\sqrt{7}}\)

\(=2\cdot\sqrt{7-2\cdot\sqrt{7}\cdot2+4}\)

\(=2\cdot\sqrt{\left(\sqrt{7}-2\right)^2}\)

\(=2\cdot\left|\sqrt{7}-2\right|\)

\(=2\cdot\left(\sqrt{7}-2\right)\)(Vì \(\sqrt{7}>2\))

\(=2\sqrt{7}-4\)

Phép 4:

Ta có: \(\sqrt{19-4\sqrt{15}}\)

\(=\sqrt{15-2\cdot\sqrt{15}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{15}-2\right)^2}\)

\(=\left|\sqrt{15}-2\right|\)

\(=\sqrt{15}-2\)(Vì \(\sqrt{15}>2\))

17 tháng 5 2017

Ta có:\(\left(\sqrt{7-\sqrt{5}}+\sqrt{7+\sqrt{5}}\right)^2=7-\sqrt{5}+7+\sqrt{5}+2\sqrt{\left(7-\sqrt{5}\right)\left(7+\sqrt{5}\right)}=14+2\sqrt{44}=14+4\sqrt{11}\)

=>\(\sqrt{7-\sqrt{5}}+\sqrt{7+\sqrt{5}}=\sqrt{14+4\sqrt{11}}=\sqrt{2}.\sqrt{7+2\sqrt{11}}\)

=>B=\(\dfrac{\sqrt{2}.\sqrt{7+2\sqrt{11}}}{\sqrt{7+2\sqrt{11}}}\cdot\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

=\(\sqrt{2}\cdot\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)(mình làm tắt tách 4=2+2=\(\sqrt{4}+\sqrt{4}\))

=\(\sqrt{2}\)\(\cdot\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}\cdot\left(1+\sqrt{2}\right)=2+\sqrt{2}\)

17 tháng 5 2017

\(B=\dfrac{\sqrt{7-\sqrt{5}}+\sqrt{7+\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}.\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(B=\dfrac{\sqrt{14-2\sqrt{5}}+\sqrt{14+2\sqrt{5}}}{\sqrt{2}.\sqrt{7+2\sqrt{11}}}.\dfrac{\sqrt{2}+\sqrt{3}+2+\sqrt{6}+\sqrt{8}+2}{\sqrt{2}+\sqrt{3}+2}\)

\(B=\dfrac{\sqrt{\left(\left(\sqrt{7+2\sqrt{11}}\right)-\left(\sqrt{7-2\sqrt{11}}\right)\right)^2}+\sqrt{\left(\left(\sqrt{7+2\sqrt{11}}\right)+\left(7-2\sqrt{11}\right)\right)^2}}{\sqrt{2}.\sqrt{7+2\sqrt{11}}}.\dfrac{\sqrt{2}+\sqrt{3}+2+\sqrt{2}\left(\sqrt{3}+2+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}\)

\(B=\dfrac{\sqrt{7+2\sqrt{11}}-\sqrt{7-2\sqrt{11}}+\sqrt{7+2\sqrt{11}}+\sqrt{7-2\sqrt{11}}}{\sqrt{2}.\sqrt{7+2\sqrt{11}}}.\dfrac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}\)

\(B=\dfrac{2.\sqrt{7+2\sqrt{11}}}{\sqrt{2}.\sqrt{7+2\sqrt{11}}}.\left(1+\sqrt{2}\right)\)

\(B=\sqrt{2}.\left(1+\sqrt{2}\right)=\sqrt{2}+2\)

3 tháng 9 2017

 \(=\sqrt{5.\left(\sqrt{3}+1\right)}.\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}\)

\(=\sqrt{5}.\left(\sqrt{3}+1\right).\sqrt{48-10.\left(2+\sqrt{3}\right)}\)

\(=\left(\sqrt{15}+\sqrt{5}\right).\sqrt{28-10\sqrt{3}}\)

\(=\left(\sqrt{15}+\sqrt{5}\right).\sqrt{\left(5-\sqrt{3}\right)^2}\)

\(=\left(\sqrt{15}+\sqrt{5}\right).\left(5-\sqrt{3}\right)\)

Vậy...

~ Chắc chắn đúng cậu nhé ~ Tiếc gì 1 tk cho tớ nào?

12 tháng 8 2016

\(\left(\sqrt{200}+5\sqrt{150}-7\sqrt{600}\right):\sqrt{50}=2+5\sqrt{3}-7\sqrt{12}\)

\(2+5\sqrt{3}-14\sqrt{3}=2-9\sqrt{3}\)

13 tháng 7 2019

\(A=\sqrt{4+\sqrt{15}}-\sqrt{7-3\sqrt{5}}\)

\(\Rightarrow A\sqrt{2}=\sqrt{8+2\sqrt{15}}-\sqrt{14-2\sqrt{45}}\)

\(A\sqrt{2}=\sqrt{\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2.\sqrt{3}.\sqrt{5}}-\sqrt{\left(\sqrt{5}\right)^2+\left(\sqrt{9}\right)^2-2.\sqrt{5}.\sqrt{9}}\)

\(A\sqrt{2}=\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{9}-\sqrt{5}\right)^2}\)

\(A\sqrt{2}=\sqrt{3}+\sqrt{5}-\sqrt{9}+\sqrt{5}=2\sqrt{5}+\sqrt{3}-\sqrt{9}\Rightarrow A=\frac{2\sqrt{5}+\sqrt{3}-\sqrt{9}}{\sqrt{2}}\)\(B=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(\Rightarrow B\sqrt{2}=\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

\(B\sqrt{2}=\sqrt{1^2+\left(\sqrt{3}\right)^2+2.1.\sqrt{3}}+\sqrt{\left(\sqrt{3}\right)^2+1^2-2.1.\sqrt{3}}\)\(B\sqrt{2}=\sqrt{\left(1+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}=1+\sqrt{3}+\sqrt{3}-1=2\sqrt{3}\)

a) Ta có:

5√15+12√20+√5515+1220+5

=√52.15+√(12)2.20+√5=√25.15+√14.20+√5=√255+√204+√5=√5+√5+√5=(1+1+1)√5=3√5=52.15+(12)2.20+5=25.15+14.20+5=255+204+5=5+5+5=(1+1+1)5=35

b)  Ta có: 

√12+√4,5+√12,512+4,5+12,5

=√12+√92+√252=√12+√9.12+√25.12=√12+√32.12+√52.12=√12+3√12+5√12=(1+3+5).√12=9√12=91√2=9.√22=9√22=12+92+252=12+9.12+25.12=12+32.12+52.12=12+312+512=(1+3+5).12=912=912=9.22=922

c) Ta có:

√20−√45+3√18+√72=√4.5−√9.5+3√9.2+√36.2=√22.5−√32.5+3√32.2+√62.2=2√5−3√5+3.3√2+6√2=2√5−3√5+9√2+6√2=(2√5−3√5)+(9√2+6√2)=(2−3)√5+(9+6)√2=−√5+15√2=15√2−√520−45+318+72=4.5−9.5+39.2+36.2=22.5−32.5+332.2+62.2=25−35+3.32+62=25−35+92+62=(25−35)+(92+62)=(2−3)5+(9+6)2=−5+152=152−5

d) Ta có:

0,1√200+2√0,08+0,4.√50=0,1√100.2+2√0,04.2+0,4√25.2=0,1√102.2+2√0,22.2+0,4√52.2=0,1.10√2+2.0,2√2+0,4.5√2=1√2+0,4√2+2√2=(1+0,4+2)√2=3,4√2



 

Bạn giải bài đâu vậy? Kiếm điểm hỏi đáp hở, Boy anime?

28 tháng 2 2017

\(A=\dfrac{2}{2.\sqrt[3]{2}+2+\sqrt[3]{2^2}}=\dfrac{2}{\left(\sqrt[3]{2}\right)^2+2.\left(\sqrt[3]{2}\right)+\left(\sqrt{2}\right)^2}\)

\(A=\dfrac{2.\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)}{\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)\left[\left(\sqrt[3]{2}\right)^2+2.\left(\sqrt[3]{2}\right)+\left(\sqrt{2}\right)^2\right]}=\dfrac{2.\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)}{\left(\sqrt[3]{2}\right)^3-\left(\sqrt{2}\right)^3}=\dfrac{2.\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)}{2-2\sqrt{2}}\)

\(A=\dfrac{2\left[.\left(\sqrt[3]{2}\right)-\left(\sqrt{2}\right)\right].\left(1+\sqrt{2}\right)}{2\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}=\left(\sqrt{2}+1\right)\left(\sqrt{2}-\sqrt[3]{2}\right)\)

28 tháng 2 2017

ở phân thức A nhân cả tử và mẫu cho: (2\(\sqrt[3]{2}\))2-2.\(\sqrt[3]{2}\left(2+\sqrt[3]{4}\right)+\left(2-\sqrt[3]{4}\right)^2\)

ở phân thức B nhân cả tử và mẫu cho :(2\(\sqrt[3]{2}\))2+\(2.\sqrt[3]{2}\left(2-\sqrt[3]{4}\right)+\left(2-\sqrt[3]{4}\right)^2\)

3: \(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

4: \(=\dfrac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=-\sqrt{2}\)

5: \(=\dfrac{\sqrt{23-8\sqrt{7}}}{3}+\dfrac{\sqrt{23+8\sqrt{7}}}{3}\)

\(=\dfrac{4-\sqrt{7}+4+\sqrt{7}}{3}=\dfrac{8}{3}\)