K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2017

a) \(a^3+4a^2-29a+24=\left(a^3-a^2\right)+\left(5a^2-5a\right)+\left(-24a+24\right)\)

\(=\left(a-1\right)\left(a^2+5a-24\right)=\left(a-1\right)\left(a^2+8a-3a-24\right)=\left(a-1\right)\left(a+8\right)\left(a-3\right)\)

b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3a^2b+3ab^2+3ac^2+3bc^2+3a^2c+3b^2c+6abc\)

\(\Rightarrow\left(a+b+c\right)^3-a^3-b^3-c^3=3a^2b+3ab^2+3ac^2+3bc^2+3a^2c+3b^2c+6abc\)

\(=3\left(a^2b+ab^2\right)+3\left(bc^2+ac^2\right)+3\left(a^2c+abc\right)+3\left(bc^2+abc\right)\)

\(=3\left(a+b\right)\left(ab+bc+ac+bc\right)=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

c) Theo trên ta có 

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)^3-3\left(a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\right)\)

\(=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ab-3bc-3ca\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

d) \(x^5+x-1=\left(x^5-x^4+x^3\right)+\left(x^4-x^3+x^2\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)

31 tháng 5 2016

 ta co' 
(x+a).(x-4)-7=(x+b).(x+c) 
nen voi x=4 thi 
-7=(4+b)(4+c)=-7.1=7.(-1) 
do a,c,b∈Z va b,c co vai tro nhu nhau nen gia su b>=c 
co 2 TH xay ra 
**{4+b=7│4+c=-1}↔{b=3│c=-5}suy ra a=2 
ta co(x+2)(x-4_-7=(x+3)(x-5) 
** {4+b=1│4+c=-7}↔{b=-3│c=-11} suy ra a=-10 
ta co(x-10)(x-4)-7=(x-3)(x-11)

tk nha mk trả lời đầu tiên đó!!!!!

13 tháng 11 2017

We have : 

\(A=\frac{-2a}{2ab+2a+1}-\frac{b}{bc+b+1}+\frac{c}{-2ac-c-1}\)

\(=\frac{-2a}{2ab+2a+2abc}-\frac{b}{bc+b+1}+\frac{bc}{-2abc-bc-b}\)(\(abc=\frac{1}{2}\))

\(=\frac{-2a}{2a\left(bc+b+1\right)}-\frac{b}{bc+b+1}+\frac{bc}{-\frac{2.1}{2}-bc-b}\)(\(abc=\frac{1}{2}\))

\(=\frac{-1}{bc+b+1}-\frac{b}{bc+b+1}-\frac{bc}{bc+b+1}\)

\(=\frac{-bc-b-1}{bc+b+1}=-1\)

The value of A is - 1 because \(abc=\frac{1}{2}\)

18 tháng 8 2019

\(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)-b^2c^2\left[\left(a-b\right)+\left(c-a\right)\right]+c^2a^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)-b^2c^2\left(a-b\right)+c^2a^2\left(c-a\right)-b^2c^2\left(c-a\right)\)

\(=\left(a-b\right)b^2\left(a-c\right)\left(a+c\right)+\left(c-a\right)c^2\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(ab^2+cb^2-c^2a-c^2b\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(ab+ac+bc\right)\)

20 tháng 8 2019

t làm bên h rồi mà? Làm quá lâu rồi luôn ấy! Đáp án y chang bạn Kid:v

Câu hỏi của Trần Minh Hiển - Toán lớp 9 (không biết AD đã fix lỗi ko dán link h vào olm chưa, nếu chưa ib t gửi full link, nhớ kèm theo link câu hỏi này là ok.)

a: \(\sqrt{36\cdot3\cdot\left(a+7\right)^2}=6\sqrt{3}\left|a+7\right|\)

b: \(\sqrt{9^2\cdot a^4\cdot b^3\cdot b^3\cdot b}=9a^2b^3\sqrt{b}\)

c: Nếu đk xác định như này thì \(C=\sqrt{16a^5b^3}\) chỉ xác định với a=b=0 thôi nha bạn

=>C=0

24 tháng 1 2022

k làm đc k cần phải ghi zậy mô ha

NV
24 tháng 1 2022

1.

\(y^2+y\left(x^3+x^2+x\right)+x^5-x^4+2x^3-2x^2\)

\(\Delta=\left(x^3+x^2+x\right)^2-4\left(x^5-x^4+2x^3-2x^2\right)\)

\(=\left(x^3-x^2+3x\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{-x^3-x^2-x+x^3-x^2+3x}{2}=-x^2+x\\y=\dfrac{-x^3-x^2-x-x^3+x^2-3x}{2}=-x^3-2x\end{matrix}\right.\)

Hay đa thức trên có thể phân tích thành:

\(\left(x^2-x+y\right)\left(x^3+2x+y\right)\)

Dựa vào đó em tự tách cho phù hợp

6 tháng 5 2016

\(T=a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+abc+abc\)

\(T=a^2b+ab^2+abc+b^2c+bc^2+abc+c^2a+a^2c\)

\(T=ab\left(a+b+c\right)+bc\left(a+b+c\right)+ac\left(a+c\right)\)

\(T=\left(a+b+c\right)\left(b\left(a+c\right)\right)+ac\left(a+c\right)\)

\(T=\left(a+c\right)\left(b\left(a+b+c\right)+ac\right)\)

9 tháng 10 2020

Câu 1:

\(a^3+a^2b-ab^2-b^3\)

\(=a^2\left(a+b\right)-b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-b^2\right)\)

\(=\left(a+b\right)\left(a-b\right)\left(a+b\right)\)

\(=\left(a+b\right)^2\left(a-b\right)\)

9 tháng 10 2020

Câu 2:

\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)+bc^3-a^3b+a^3c-b^3c\)

\(=a\left(b-c\right)\left(b^2+bc+c^2\right)-a^3\left(b-c\right)-bc\left(b-c\right)\left(b+c\right)\)

\(=\left(b-c\right)\left(ab^2+abc+c^2a-a^3-b^2c-bc^2\right)\)

\(=\left(b-c\right)\left[a\left(c-a\right)\left(c+a\right)-b^2\left(c-a\right)-bc\left(c-a\right)\right]\)

\(=\left(b-c\right)\left(c-a\right)\left(ca+a^2-b^2-bc\right)\)

\(=\left(b-c\right)\left(c-a\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)