Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left(x^2-2x+3\right)\left(x^2-2x+5\right)-8\). Rút gọn A,ta được:
\(A=x^4-4x^3+12x^2-16x+7\)
\(=x^4-2x^3+x^2-2x^3+4x^2-2x+7x^2-14x+7\)
\(=x^2\left(x^2-2x+1\right)-2x\left(x^2-2x+1\right)+7\left(x^2-2x+1\right)\)
\(=\left(x^2-2x+1\right)\left(x^2-2x+7\right)\)
\(=\left(x-1\right)^2\left(x^2-2x+7\right)\)
Ok chứ?
Ta có : (2x + 5)2 - (x - 9)2
= (2x + 5 - x + 9)(2x + 5 + x - 9)
= (x + 14)(3x - 4)
x3 - 2x2 + 6x - 5 = x3 - x2 - x2 + x + 5x - 5 = x2(x - 1) - x(x - 1) + 5(x - 1) = (x2 - x + 5)(x - 1)
a) \(x^2\left(m+n\right)-3y^2\left(m+n\right)\)
\(=\left(m+n\right)\left(x^2-3y^2\right)\)
\(=\left(m+n\right)\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
b) \(2x\left(x-4\right)-5\left(4-x\right)-\left(2x+5\right)\left(7-5x\right)\)
\(=2x\left(x-4\right)+5\left(x-4\right)-\left(2x+5\right)\left(7-5x\right)\)
\(=\left(x-4\right)\left(2x+5\right)-\left(2x+5\right)\left(7-5x\right)\)
\(=\left(2x+5\right)\left(x-4-7+5x\right)\)
\(=\left(2x+5\right)\left(6x-11\right)\)
a ) ( x2 + 2x + 5 )( x2 + 2x + 3 ) - 8
= ( x2 + 2x + 5 )[ ( x2 + 2x + 5 ) - 2 ] - 8
= ( x2 + 2x + 5 )2 - 2 . ( x2 + 2x + 5 ) + 1 - 9
= ( x2 + 2x + 5 - 1 )2 - 9
= ( x2 + 2x + 4 )2 - 33
= ( x2 + 2x + 4 - 3 )( x2 + 2x + 4 + 3 )
= ( x2 + 2x + 1 )( x2 + 2x + 7 )
b ) ( x2 + 2x )( x2 + 2x - 2 ) - 3
= ( x2 + 2x )[ ( x2 + 2x ) - 2 ] - 3
= ( x2 + 2x )2 - 2 . ( x2 + 2x ) + 1 - 4
= ( x2 + 2x - 1 )2 - 22
= ( x2 + 2x - 1 - 2 )( x2 + 2x - 1 + 2 )
= ( x2 + 2x - 3 )( x2 + 2x + 1 )
= ( x2 + 2x - 3 )( x + 1 )2
trả lời :
- \(\left(x^2+2x+5\right)\left(x^2+2x+3\right)\)
Đặt: \(x^2+2x+5=t\Rightarrow x^2+2x+3=t+2\),ta có:
\(t\left(t+2\right)-8\)
\(=t^2+2t-8\)
\(=t^2+4t-2t-8\)
\(=t\left(t+4\right)-2\left(t+4\right)\)
\(=\left(t+4\right)\left(t-2\right)\)
Thay vào cách đặt , ta có:
\(\left(x^2+2x+5+4\right)\left(x^2+2x+5-2\right)\)
\(=\left(x^2+2x+9\right)\left(x^2+2x+3\right)\)
\(=\left(x^2+2x+9\right)\left(x^2+3x-x+3\right)\)
\(=\left(x^2+2x+9\right)\left(x+3\right)\left(x-1\right)\)
- \(\left(x^2+2x\right)\left(x^2+2x-2\right)-3\)
Đặt : \(x^2+2x=t\Rightarrow\left(x^2+2x-2\right)=t-2\),ta có:
\(t\left(t-2\right)-3\)
\(=t^2-2t-3\)
\(=t^2-3t+t-3\)
\(=t\left(t-3\right)+\left(t-3\right)\)
\(=\left(t-3\right)\left(t+1\right)\)
Thay vào cách đặt, ta có:
\(\left(x^2+2x-3\right)\left(x^2+2x+1\right)\)
\(=\left(x^2+3x-x-3\right)\left(x+1\right)^2\)
\(=\left(x+3\right)\left(x-1\right)\left(x+1^2\right)\)
#hok tốt #
`x^2+2x-5`
`=(x^2+2x+1)-6`
`=(x+1)^2-\sqrt6^2`
`=(x+1+\sqrt6)(x+1-\sqrt6)`
\(x^2+2x-5\)
\(= x^2+2x+1-6\)
\(= (x+1)^2-6\)
\(= (x+1)^2-\left(\sqrt{6}\right)^2\)
\(= \left(x+1-\sqrt{6}\right)\left(x+1+\sqrt{6}\right)\)