\(a^3.\left(c-b^2\right)+b^3.\left(a-c^2\right)+c^3.\left(b-a^2\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2015

Khó như thế ai làm được

12 tháng 7 2015

có ai làm đc ko nè , 10 phút nữa nhé 

21 tháng 9 2016

a3(c - b2) + b3(a - c2) + c3(b - a2) + abc(abc - 1)

= a3c - a3b2 + ab3 - b3c2 + bc3 - a2c3 + a2b2c2 - abc

= a2b2c2 - b3c2 - (a2c3 - bc3) - (a3b2 - ab3) + (a3c - abc)

= b2c2(a2 - b) - c3(a2 - b) - ab2(a2 - b) + ac(a2 - b)

= (a2 - b)(b2c2 - c3 - ab2 + ac) = (a2 - b)[c2(b2 - c) - a(b2 - c)] = (a2 - b)(b2 - c)(c2 - a)

29 tháng 9 2018

a3(c - b2) + b(a - c2) + c3(b - a2) + abc(abc - 1)

= a3c - a3b2 + ab3 - b3c2 + c3b - a2c3 + a2b2c2 - abc

= (a2b2c2 - b3c2) + (a3c - abc) - (a3b2 - ab3) - (a2c3 - c3b)

= b2c2(a2 - b) + ac(a2 - b) - ab2(a2 - b) - c3(a2 - b)

= (a2 - b)(b2c2 + ac - ab2 - c3)

= (a2 - b)[(b2c2 - c3) - (ab2 - ac)]

= (a2 - b)[c2(b2 - c) - a(b2 - c)]

= (a2 - b)(c2 - a)(b2 - c)

1 tháng 6 2018

a) a2(a-b)-b2(a-c)-c2(b-a)

=a2(a-b)-b2(a-c)+c2(a-b)

=(a-b)(a2-c2)-b2(a-c)

=(a-b)(a-c)(a+c)-b2(a-c)

=(a-c)[(a-b)(a+c)-b2]

b)a(b-c)3+b(c-a)3+c(a-b)3

=a(b-c)3-b[(a-b)+(b-c)]+c(a-b)3

=a(b-c)3-b[(a-b)3+3(a-b)2(b-c)+3(a-b)(b-c)2+(b-c)3]+c(a-b)3

=a(b-c)3-b(a-b)3+3b(a-b)2(b-c)+3b(a-b)(b-c)2+b(b-c)3+c(a-b)3

=(b-c)3(a-b)-(a-b)3(b-c)-3b(a-b)(b-c)(a-b+b-c)

=(b-c)3(a-b)-(a-b)3(b-c)-3b(a-b)(b-c)(a-c)

=(a-b)(b-c)[(b-c)2-(a-b)2-3b(a-c)]

=(a-b)(b-c)[(b-c-a+b)(b-c+a-b)-3b(a-c)]

=(a-b)(b-c)[(2b-a-c)(a-c)-3b(a-c)]

=(a-b)(b-c)(a-c)(2b-a-c-3b)

=-(a-b)(b-c)(a-c)(a+b+c)

=(a-b)(b-c)(c-a)(a+b+c)

c)abc-(ab+ac+bc)+(a+b+c)-1

=abc-ab-ac-bc+a+b+c-1

=abc-bc-ab+b-ac+c+a-1

=bc(a-1)-b(a-1)-c(a-1)+a-1

=(a-1)(bc-b-c+1)

=(a-1)[b(c-1)-(c-1)]

=(a-1)(c-1)(b-1)

=(a-1)(b-1)(c-1)

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)