Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) \(x^2-7=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
b) \(4x^2-5=\left(2x-\sqrt{5}\right)\left(2x+\sqrt{5}\right)\)
c) \(3x^2-1=\left(x\sqrt{3}-1\right)\left(x\sqrt{3}+1\right)\)
d) \(x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
e) \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
f) \(9x-4=\left(3\sqrt{x}-2\right)\left(3\sqrt{x}+2\right)\)
2) a) \(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
b) \(x^2-6=\left(x-\sqrt{6}\right).\left(x+\sqrt{6}\right)\)
c) = \(x^2+2x.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)
d) = \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)^2\)
Bài đã chữa:
a, x - 9 (x > 0)
= \(\left(\sqrt{x}\right)^2\) - 32
= \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)\)
b, x - 5\(\sqrt{x}\) + 4
= x - \(4\sqrt{x}-\sqrt{x}\) +4
= \(\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)\)
Lời giải:
a)
\(3x^2-5x+1=2x-3\)
\(\Leftrightarrow 3x^2-5x+1-2x+3=0\)
\(\Leftrightarrow 3x^2-7x+4=0\) (\(a=3; b=-7; c=4)\)
b)
\(\frac{3}{5}x^2-4x-3=3x+\frac{1}{3}\)
\(\Leftrightarrow \frac{3}{5}x^2-4x-3-3x-\frac{1}{3}=0\)
\(\Leftrightarrow \frac{3}{5}x^2-7x-\frac{10}{3}=0(a=\frac{3}{5};b=-7; c=\frac{-10}{3})\)
c)
\(\Leftrightarrow -\sqrt{3}x^2+x-5-\sqrt{3}x-\sqrt{2}=0\)
\(\Leftrightarrow -\sqrt{3}x^2+(1-\sqrt{3})x-(5+\sqrt{2})=0\)
(\(a=-\sqrt{3}; b=1-\sqrt{3}; c=-(5+\sqrt{2}))\)
d)
\(\Leftrightarrow x^2-5(m+1)x+m^2-2=0\)
(\(a=1;b=-5(m+1); c=m^2-2)\)
a: \(\text{Δ}=\left(-5\right)^2-4\cdot3\cdot8=25-96< 0\)
Do đó: Phươbg trình vô nghiệm
b: \(\text{Δ}=\left(-3\right)^2-4\cdot15\cdot5=9-300< 0\)
Do đó: Phương trình vô nghiệm
c: \(\Leftrightarrow x^2-4x+4-3=0\)
\(\Leftrightarrow\left(x-2\right)^2=3\)
hay \(x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)
d: \(\Leftrightarrow3x^2+6x+x+2=0\)
=>(x+2)(3x+1)=0
=>x=-2 hoặc x=-1/3
a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))
b \(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))
+) Tính giá trị của x2 + 4x - 1 tại x = -2 + \(\sqrt{5}\)
=> (-2 + \(\sqrt{5}\)) 2 + 4.(-2 + \(\sqrt{5}\)) - 1 = 4 - 4\(\sqrt{5}\) + 5 - 8 + 4\(\sqrt{5}\) - 1 = 0
Vậy x2 + 4x - 1 = 0 tại x = -2 + \(\sqrt{5}\)
+) A = 3x3.(x2 + 4x - 1 ) - 5x3 - 23x2 - 7x + 1
= 3x3.(x2 + 4x - 1 ) - 5x.(x2 + 4x - 1) - 3x2 - 12x + 1
= (3x3 - 5x).(x2 + 4x - 1 ) - 3.(x2 + 4x -1) - 2 = (3x3 - 5x - 3).(x2 + 4x - 1 ) - 2
Vậy tại x = - 2 + \(\sqrt{5}\) thì A = - 2
+) A = (3x3 - 5x - 3).(x2 + 4x - 1 ) - 2 chia cho (x2 + 4x - 1 ) dư - 2
Câu a và câu c đề sai
Giúp mình những câu còn lại đi