Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có : a\(^2\)+ b\(^2\)+ c\(^2\) =ab+bc+ca
=> 2(a\(^2\)+b\(^2\)+c\(^2\))= 2(ab+bc+ca)
<=>2a\(^2\)+2b\(^2\)+2c\(^2\)=2ab+2bc+2ca
<=> 2a\(^2\)+2b\(^2\)+2c\(^2\)-2ab-2bc-2ca=0
<=> a\(^2\)+a\(^2\)+b\(^2\)+b\(^2\)+c\(^2\)+c\(^2\)-2ab-2bc=2ca=0
<=> (a\(^2\)-2ab+b\(^2\))+(b\(^2\)-2bc+b\(^2\))+(a\(^2\)-2ca+c\(^2\))
<=> (a-b)\(^2\)+(b-c)\(^2\)+(a-c)\(^2\) =a
<=> hoặc a-b=0 hoặc b-c=o hoặc a-c=o <=>a=b hoặc b=c hoặc a=c
=>a=b=c (đpcm)
a) Theo đề bài: \(a^2+b^2=ab\)
=>\(a^2+b^2-ab=0\)
=>\(a^2-2ab+b^2+ab=0\)
=>\(\left(a-b\right)^2+ab=0\)
Vì \(\left(a-b\right)^2\ge0\) để \(\left(a-b\right)^2+ab=0\) <=> \(\left(a-b\right)^2=ab=0\)
(a-b)2=0 <=> a-b=0 <=> a=b (đpcm)
b)\(a^2+b^2+c^2=ab+bc+ca\)
=>\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
=>\(2a^2+2b^2+2c^2=2ab+2bc+2ac\)
=>\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Vì \(\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(a-c\right)^2\ge0\end{cases}\) để \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
<=>\(\left(a-b\right)^2=\left(b-c\right)^2=\left(a-c\right)^2=0\)
<=>a-b=b-c=a-c=0
<=>a=b=c (đpcm)
1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc
= (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)
= (a+b+c)( a2+b2+c2-ab-bc-ca)
Bài 1:
a) ĐKXĐ: \(x\ne\pm5\)
\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)
\(=\frac{x-5}{\left(x+5\right)\left(x-5\right)}+\frac{2\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{2x+10}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x-5+\left(2x+10\right)-\left(2x+10\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x-5}{\left(x-5\right)\left(x+5\right)}=\frac{1}{x+5}\)
b) \(B=9x^2-42x+49=\left(3x-7\right)^2\)
Tại \(x=-3\)thì: \(B=\left[3.\left(-3\right)-7\right]^2=256\)
Bài 2:
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)
\(=\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)
b) \(A=4\)\(\Rightarrow\)\(\frac{4}{x-3}=4\)
\(\Rightarrow\)\(4\left(x-3\right)=4\)\(\Leftrightarrow\)\(x-3=1\)\(\Leftrightarrow\)\(x=4\) (t/m ĐKXĐ)
Vậy....
Mình không biết đầu bài của bạn là gì nhưng nếu rút gọn thì bạn làm theo cách này nha
(a2+ab+b2).(a2 - ab + b2) - (a4+b4)
= (a2+b2)2-(ab)2-a4-b4
= a4+2(ab)2+b4-(ab)2-a4-b4
= (ab)2
Nếu bạn có gì khó hiểu với lời giải này thì cứ hỏi mình nha
phân tích ra là:(a2+b2-ab)(a2+b2+ab)=(a2+b2)2 - (ab)2 hằng đẳng thức.
=>bất đẳng thức bằng (a2+b2)2 - (ab)2 -(a4+b4)=a4+b4+2a2b2 - (ab)2-(a4+b4)=a2b2.
đề chứng mình gì rứa?
a) \(A=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2x+10}{\left(x+5\right)\left(x-5\right)}\)
\(A=\dfrac{x-5+2x+10-2x-10}{\left(x+5\right)\left(x-5\right)}=\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}=\dfrac{1}{x+5}\)
b) \(A=-3\Rightarrow\dfrac{1}{x+5}=-3\)
\(\Leftrightarrow x+5=-\dfrac{1}{3}\Leftrightarrow x=-\dfrac{1}{3}-5=\dfrac{-16}{3}\)
\(9x^2-42x+49=\left(3x-7\right)^2=\left(3.\dfrac{-16}{3}-7\right)^2=\left(-23\right)^2=529\) \(\left(x=\dfrac{-16}{3}\right)\)
a) \(a^4+b^4\)
\(=\left(a^2\right)^2+\left(b^2\right)^2\)
\(=\left(a^2-b^2\right).\left(a^2+b^2\right)\)
b) Tương tự
c) \(a^5+b^5\)
\(=\left(\sqrt{a}^5\right)^2+\left(\sqrt{b}^5\right)^2\)
\(=\left(\sqrt{a}^5+\sqrt{b}^5\right).\left(\sqrt{a}^5-\sqrt{b}^5\right)\)