K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2016

a. \(-x^3-6x^2+6x+1=-x^3+x^2-7x^2+7x-x+1=\left(1-x\right)\left(x^2+7x+1\right)\)

b. \(x^4-4x^2+4x-1=x^4-1-4x\left(x-1\right)=\left(x-1\right)\left[\left(x+1\right)\left(x^2+1\right)-4x\right]\)

\(=\left(x-1\right)\left(x^3+x^2-3x+1\right)\)

c. \(6x^3-x^2-486x+81=6x^3-54x^2+53x^2-477x-9x+81=\left(x-9\right)\left(6x^2+53x-9\right)\)

\(=\left(x-9\right)\left(x+9\right)\left(6x-1\right)\)

d. \(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)=x^2\left(x^2+8x+16\right)-x^2-8x-16-x^2+1\)

\(=x^4+8x^3+14x^2-8x-15=x^4+5x^3+3x^3+15x^2-x^2-5x-3x-15\)

\(=\left(x+5\right)\left(x^3+3x^3-x-3\right)=\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)\)

Để phân tích nhân tử các dạng này, em cần nhẩm được nghiệm để biết đc nhân tử chung là gì, sau đó tách để xuất hiện nhân tử chung đó. CHÚC EM HỌC TỐT :)) 

\(a/\)

\(4x-4y+x^2-2xy+y^2\)

\(=\left(4x-4y\right)+\left(x^2-2xy+y^2\right)\)

\(=4\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left(4+x-y\right)\)

\(b/\)

\(x^4-4x^3-8x^2+8x\)

\(=\left(x^4+8x\right)-\left(4x^3+8x^2\right)\)

\(=x\left(x^3+8\right)-4x^2\left(x+2\right)\)

\(=x\left(x+2\right)\left(x^2-2x+4\right)-4x^2\left(x+2\right)\)

\(=x\left(x+2\right)\left(x^2-2x+4-4x\right)\)

\(=x\left(x+2\right)\left(x^2-6x-4\right)\)

\(d/\)

\(x^4-x^2+2x-1\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2+x-1\right)\left(x^2-x+1\right)\)

\(e/\)(Xem lại đề)

\(x^4+x^3+x^2+2x+1\)

\(=\left(x^4+x^3\right)+\left(x^2+2x+1\right)\)

\(=x^3\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(x+1\right)\left(x^3+x+1\right)\)

\(f/\)

\(x^3-4x^2+4x-1\)

\(=x\left(x^2-4x+4\right)-1^2\)

\(=x\left(x-2\right)^2-1\)

\(=[\sqrt{x}\left(x-2\right)]^2-1\)

\(=[\sqrt{x}\left(x-2\right)-1][\sqrt{x}\left(x-2\right)+1]\)

\(c/\)

\(x^3+x^2-4x-4\)

\(=\left(x^3-2x^2\right)+\left(3x^2-6x\right)+\left(2x-4\right)\)

\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+3x+2\right)\)

\(=\left(x-2\right)[\left(x^2+x\right)+\left(2x+2\right)]\)

\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)

6 tháng 10 2019

\(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)

\(+\left(x^7-x^5+x^4-x^2+x\right)\)

\(+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

6 tháng 10 2019

\(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

2 tháng 9 2018

\(x^3-4x^2-8x+8\)

\(=x^3+2x^2-6x^2-12x+4x+8\)

\(=x^2\left(x+2\right)-6x\left(x+2\right)+4\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-6x+4\right)\)

2 tháng 8 2021

a, \(x^2-4-3\left(x-2\right)=\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)

b, \(x^2-xy+5y-25=\left(x-5\right)\left(x+5\right)-y\left(x-5\right)=\left(x+5-y\right)\left(x-5\right)\)

c, \(x^3+x^2-2x-8=\left(x-2\right)\left(x^2+2x+4\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+3x+4\right)\)

d, \(x^3-4x^2-8x+8=\left(x+2\right)\left(x^2-2x+4\right)-4x\left(x+2\right)=\left(x^2-6x+4\right)\left(x+2\right)\)

2 tháng 8 2021

Trả lời:

1, x2 - 4 - 3 ( x - 2 )

= ( x2 - 4 ) - 3 ( x - 2 )

= ( x - 2 ) ( x + 2 ) - 3 ( x - 2 )

= ( x - 2 ) ( x + 2 - 3 )

= ( x - 2 ) ( x - 1 )

2, x2 - xy + 5y - 25

= ( x2 - 25 ) - ( xy - 5y )

= ( x - 5 ) ( x + 5 ) - y ( x - 5 )

= ( x - 5 ) ( x + 5 - y )

3, x3 + x2 - 2x - 8

= ( x3 - 8 ) + ( x2 - 2x )

= ( x - 2 ) ( x2 + 2x + 4 ) + x ( x - 2 )

= ( x - 2 ) ( x2 + 2x + 4 + x )

= ( x - 2 ) ( x2 + 3x + 4 )

4, x3 - 4x2 - 8x + 8 

= ( x3 + 8 ) - ( 4x2 + 8x )

= ( x + 2 ) ( x2 - 2x + 4 ) - 4x ( x + 2 )

= ( x + 2 ) ( x2 - 2x + 4 - 4x )

= ( x + 2 ) ( x2 - 6x + 4 )

1 tháng 8 2021

xin lỗi em lớp 3 :>>>>

1 tháng 8 2021

𝑥2−3𝑥+2

(x-5)^2

k nhé tó k lại

24 tháng 7 2018

\(x^2+4x+4=\left(x+2\right)^2 \)

\(4x^2-4x+1=\left(2x-1\right)^2\)

\(c\left(x+1\right)-y\left(x+1\right)=\left(x+1\right)\left(c-y\right)\)

\(x^3-3x^2+3x-1+27y^3=\left(x-1\right)^3+27y^3=\left(x-1+3y\right)\left(x^2-2x+1-3xy+3y+9y^2\right)\)