Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(x-1) + xn.(x3-1)
=(x-1) + xn . (x-1)(x2+x+1)
=(x-1)[1+xn(x2+x+1)]
=(x-1)(1+xn+2+xn+1+xn)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
3(x4+x+1)-(x2+x+1)2
=3(x2+x+1)(x2-x+1)-(x2+x+1)2
=(x2+x+1)[3(x2-x+1)-(x2-x+1)
=(x2+x+1)(3x2-3x+3-x2+x-1)
=(x2+x+1)(2x2-2x+2)
=(x2+x+1)2(x2-x+1)
bạn vu cong thien làm sai rồi.
\(x^4+x^2+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
chứ không phải là:
\(x^4+x+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\)đâu!
Bài làm
a) x2 - 5x - 14
= x2 + 2x - 7x - 14
= ( x2 + 2x ) - ( 7x + 14 )
= x( x + 2 ) - 7( x + 2 )
= ( x + 2 )( x - 7 )
# Học tốt #
22n + 3 - 4n + 1 - 22n + 1 = 160
=> 22n.8 - 22n + 2 - 22n.2 = 160
=> 22n.8 - 22n.4 - 22n.2 = 160
=> 22n(8 - 4 - 2) = 160
=> 22n.2 = 160
=> 22n = 160 : 2
=> 22n = 80
(xem lại đề)
Phân tích :
x2 - 5x - 14 = x2 - 7x + 2x - 14 = x(X - 7) + 2(x - 7) = (x + 2)(x - 7)
x2 - xy - 12y2 = x2 - 4xy + 3xy - 12y2 = x(x - 4y) + 3y(x - 4y) = (x + 3y)(x - 4y)
Ta có:\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2=3x^4+3x^2+3-x^4-x^2-1-2x^3-2x-2x^2\)
\(=2x^4-2x^3-2x+2=2x^3\left(x-1\right)-2\left(x-1\right)=2\left(x^3-1\right)\left(x-1\right)\)
\(=2\left(x-1\right)^2\left(x^2+x+1\right)\)
(x+1)4+(x2+x+1)2=(x+1)2.(x+1)2+x4+x2+12=(x+1)2.(x+1)2+x4+(x+1)2=(x+1)2.[(x+1)2+x4]
(x + 1)4 + (x2 + x + 1)2
= (x + 1)4 + x4 + 2.x2.(x + 1) + (x + 1)2
= (x + 1)4 + (x + 1)2 + x4 + 2x2(x + 1)
= (x + 1)2.[(x + 1)2 + 1] + x2.[x2 + 2(x + 1)]
= (x + 1)2.[x2 + 2x + 1 + 1] + x2.[x2 + 2x + 2]
= [(x + 1)2 + x2] . [x2 + 2x + 2]
= [x2 + 2x + 1 + x2] . [x2 + 2x + 2]
= [2x2 + 2x + 1] . [x2 + 2x + 2]
cái j thế bn