K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

=x3-x2+7x2-7x+19x-19

=x2(x-1)+7x(x-1)+19(x-1)

=(x2+7x+19)(x-1)

11 tháng 5 2017

b> <X2>3+<X-1>3

<X2+X-1><X4-X<X-1>+<X-1>2>

<X2+X-1><X4-3X+1>

12 tháng 9 2020

a) A=x3+3x2+3x

A=x3+3x2.1+3x.12+13

A=(x+1)3

b)A=x3-3x2+3x-1

A=x3-3x2.1+3x.12-13

A=(x-1)3

c)A=x3+6x2+12x

A=x3+3.2x2+3.22x+13

A=(x+1)3

12 tháng 9 2020

A = x3 + 3x2 + 3x = (x3 + 3x2 + 3x + 1) - 1 =  (x + 1)3 - 13 = (x + 1 - 1)[(x + 1)2 + (x + 1) + 1] = x(x2 + 3x + 3)

A = x3 - 3x2 + 3x - 1 = (x - 1)3

A = x3 + 6x2 + 12x = (x3 + 6x2 + 12x + 8) - 8 = (x + 2)3 - 23 = (x + 2 - 2)[(x  + 2)2 + 2(x + 2) + 4) = x(x2 + 6x + 12)

14 tháng 8 2018

a)18x2-12x

=3x(6x-4)

b)3x2-11x+6

=x(3x-11+6)

=x(3x-5)

c)x3+6x2+11x+6

=x2(x+23

3 tháng 9 2018

\(18x^2-12x\)

\(=6x\left(3x-2\right)\)

\(3x^2-11x+6\)

\(=3x^2-9x-2x+6\)

\(=3x\left(x-3\right)-2\left(x-3\right)\)

\(=\left(x-3\right)\left(3x-2\right)\)

31 tháng 8 2017
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1) b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c) =(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc) c)Đặt x-y=a;y-z=b;z-x=c a+b+c=x-y-z+z-x=o đưa về như bài b d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y) =x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
2 tháng 8 2016

a, \(x^3+6x^2+11x+6\)

\(=x^3+3x^2+3x^2+9x+2x+6\)

\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+3x+2\right)\)

\(=\left(x+3\right)\left(x^2+x+2x+2\right)\)

\(=\left(x+3\right)\text{[}x\left(x+1\right)+2\left(x+1\right)\text{]}\)

\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

b, \(2x^3+3x^2+3x+2\)

\(=2x^3+2x^2+x^2+x+2x+2\)

\(=2x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(2x^2+x+2\right)\)

c, \(x^3-4x^2-8x+8\)

\(=x^3+2x^2-6x^2-12x+4x+8\)

\(=x^2\left(x+2\right)-6x\left(x+2\right)+4\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-6x+4\right)\)

\(x^3+6x^2-13x-42\)

\(x^3+6x^2-13x-42\)

\(=\left(x+7\right)\left(x-3\right)\left(x+2\right)\)

2 tháng 8 2016

b, \(2x^3-x^2+3x+6\)

\(=2x^3+2x^2-3x^2-3x+6x+6\)

\(=2x^2\left(x+1\right)-3x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(2x^2-3x+6\right)\)

11 tháng 12 2016

b, x3+x2-4x2-4x+4x+4

Sau đó phân tích tiếp

 

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

15 tháng 7 2017

a)\(x^3+x+2=x^3+1+x+1\)

                          \(=\left(x+1\right)\left(x^2-x+1\right)+\left(x+1\right)\)

                            \(=\left(x+1\right)\left(x^2-x+2\right)\)

b)\(x^3+3x^2-4=x^3-1+3x^2-3\)

                             \(=\left(x-1\right)\left(x^2+x+1\right)+3\left(x^2-1\right)\)

                               \(=\left(x-1\right)\left(x^2+x+1\right)+3\left(x-1\right)\left(x+1\right)\)

                              \(=\left(x-1\right)\left[x^2+x+1+3x+3\right]\)

                                \(=\left(x-1\right)\left(x+2\right)^2\)