Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: x - y = a ; 3x + y - z = b ; -4x + z = c
Ta có: a + b + c = x - y + 3x + y - z - 4x + z = 0
Khi đó: \(\left(x-y\right)^3+\left(3x+y-z\right)^3+\left(-4x+z\right)^3\)
= \(a^3+b^3+c^3\)
= \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc+ac\right)+3abc\)
= \(0.\left(a^2+b^2+c^2-ab-bc+ac\right)+3abc\)
= \(3abc\)
= \(3\left(x-y\right)\left(3x+y-z\right)\left(-4x+z\right)\)
Đặt \(x+y-z=a;x-y+z=b;y+z-x=c\)
Ta có:\(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(A=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(A=\left(a+b\right)^3+3\left(a+b\right)\cdot c\cdot\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(A=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(A=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Hay \(A=3\cdot2x\cdot2y\cdot2z\)
\(A=24xyz\)
a) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=x^3+y^3+z^3+3x^2y+3x^2z+3y^2z+3xy^2+3xz^2+3yz^2+6xyz-x^3-y^3-z^2\)
\(=3x^2y+3xy^2+3x^2z+3xz^2+3y^2z+3yz^2+6xyz\)
\(=3xy\left(x+y\right)+3xz\left(x+z\right)+3yz\left(y+z\right)+6xyz\)
\(=3\left[xy\left(x+y\right)+xz\left(x+z\right)+yz\left(y+z\right)+2xyz\right]\)
\(=3\left[xy\left(x+y\right)+x^2z+xz^2+y^2z+yz^2+2xyz\right]\)
\(=3\left[xy\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)+yz\left(x+y\right)\right]\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
b) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)
\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)
\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z\right)-\left(x-y\right)\left(y-2z+x\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-y+2z-x\right)\)
\(=\left(x-z\right)\left(x-y\right)\left(3z-3y\right)\)
\(=3\left(x-z\right)\left(x-y\right)\left(z-y\right)\)
ủa vậy nó =0 rồi bạn ơi
x^3 +y^3 +z^3 -x^3 -y^3 -z^3 =0 rồi
cần xem lại đề nha
thấy mình nói đúng thi T I C K cho mình nha mấy bạn
(x^3 +y^3 + z^3) - (x^3 +y^3 +z^3)
= (1-1) (x^3 + y^3 + z^3)
= 0 *(x^3 + y^3 + z^3)
Sao kì quá =.=!!!