Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3xyz^2+\left(-\frac{4}{8}\right)xyz^5\cdot\frac{1}{3}xyz\)
\(=3xyz^2-\frac{1}{2}xyz\cdot\frac{1}{3}xyz\)
\(=3xyz-\frac{1}{6}x^2y^2z^2\)
\(xyz\left(3-\frac{1}{6}xyz\right)\)
b) \(3xyz^5\cdot\left(-\frac{1}{7}\right)xyz\cdot\frac{-1}{8}xyz^4\)
\(=\left[3\cdot\left(-\frac{1}{7}\right)\cdot\left(-\frac{1}{8}\right)\right]\left(x\cdot x\cdot x\right)\left(y\cdot y\cdot y\right)\left(z^5\cdot z\cdot z^4\right)\)
\(=\frac{3}{56}x^3y^3z^{10}\)
a, \(3xyz^2+\left(\frac{-4}{8}xyz^5\right)\cdot\frac{1}{3}xyz=3xyz^2+\left[\left(\frac{-4}{8}\right)\cdot\frac{1}{3}\right]xyz^5xyz\)\(=3xyz^2-\frac{1}{2}x^2y^2z^6\)
b, \(3xyz^5\cdot\left(\frac{-1}{7}xyz^2\right)\cdot\frac{-1}{8}xyz^4=\left[3\cdot\left(\frac{-1}{7}\right)\cdot\left(\frac{-1}{8}\right)\right]xyz^5xyz^2xyz^4=\frac{3}{56}x^3y^3z^{11}\)
1)
Tìm Max : Viết A dưới dạng : \(A=\frac{-\left(x^2-2x+1\right)+2x^2+4}{x^2+2}=-\frac{\left(x-1\right)^2}{x^2+2}+2\le2\)với mọi x
\(\Rightarrow MaxA=2\Leftrightarrow x=1\)
Tìm Min : Viết A dưới dạng : \(A=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{\left(x^2+4x+4\right)+x^2+2}{2\left(x^2+2\right)}=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}+\frac{1}{2}\ge\frac{1}{2}\)với mọi x
\(\Rightarrow MinA=\frac{1}{2}\Leftrightarrow x=-2\)
2) Biểu diễn M dưới dạng :
\(M=a^3+a^2-b^3+b^2+ab-3a^2b+3ab^2-3ab=\left(a^2-2ab+b^2\right)+\left(a^3-3a^2b+3ab^2-b^3\right)=\left(a-b\right)^2+\left(a-b\right)^3\)
Thay a-b = 1 vào M được : \(M=2\)
3) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]-24=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)Đặt \(t=x^2+5x+5\)thay vào biểu thức trên được \(\left(t-1\right)\left(t+1\right)-24=t^2-25=\left(t-5\right)\left(t+5\right)=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)
Vậy kết quả phân tích thành nhân tử là : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=x\left(x+5\right)\left(x^2+5x+10\right)\)
4)
a) \(\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=1\Leftrightarrow1+2\left(ab+bc+ac\right)=1\Leftrightarrow ab+bc+ac=0\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak;y=bk;z=ck\Rightarrow xy+yz+zx=k^2ab+k^2bc+k^2ac=k^2\left(ab+bc+ac\right)=0\)
Vậy xy + yz + zx = 0 (đpcm)
b) Theo bài ra ta có : \(\hept{\begin{cases}a+b+c=1\left(1\right)\\a^2+b^2+c^2=1\left(2\right)\\a^3+b^3+c^3=1\left(3\right)\end{cases}}\)
Từ (1) và (3) suy ra được : \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)^3=0\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Do đó : \(a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)
Nếu \(a+b=0\Rightarrow c=1\Rightarrow a^2+b^2=0\)
Đến đây ta có hệ : \(\hept{\begin{cases}a+b=0\\a^2+b^2=0\\a^3+b^3=0\end{cases}\Leftrightarrow a=b=0}\)
Làm tương tự với \(b+c=0\)và \(c+a=0\)
Kết luận tập nghiệm : \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;0\right);\left(1;0;0\right)\)
Lời giải : Ta có x + y - 3 = xy(1 - 2xy)
<=> xy + 3 = x4 + y4 + 2x2y2
<=> xy + 3 = (x2 + y2)2 (1).
Do (x2 - y2)2 ≥ 0 với mọi x, y, dễ dàng suy ra (x2 + y2)2 ≥ 4(xy)2 với mọi x, y (2).
Từ (1) và (2) ta có :
xy + 3 ≥ 4(xy)2 <=> 4t2 - t - 3 ≤ 0 (với t = xy)
<=> (t - 1)(4t + 3) ≤ 0
Vậy : t = xy đạt GTLN bằng 1
3. S= -1/6 + -1/20 + 1/10 + 1/6
=0
4. A= -1 -1 -1 -1 -.... -1 [ có (50-2): 2 +1 = 25 số -1)
=-25
\(\frac{a^4c^3+b^4a^3+c^4b^3}{a^3b^3c^3}\)= \(\frac{b^4c+c^4a+a^4b}{abc}\)
\(\Rightarrow\)\(a^4c^3+b^4a^3+c^4b^3\)= \(b^4c+c^4a+a^4b\)
\(\Rightarrow\)\(a^4\left(c^3-b\right)+b^4\left(a^3-c\right)+c^4\left(b^3-a\right)\)= 0
suy ra c^3 -b = 0 hoặc a^3 -c = 0 hoặc b^3 -a = 0
suy ra đpcm
đặt \(\hept{\begin{cases}x=\frac{a}{b^3}\\y=\frac{b}{c^3}\\z=\frac{c}{a^3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{x}=\frac{b^3}{a}\\\frac{1}{y}=\frac{c^3}{b}\\\frac{1}{z}=\frac{a^3}{c}\end{cases}}\)khi đó xyz=1
đề bài <=> x+y+z =1/x +1/y +1/z => x+y+z =yz+xz+xy
từ đó => xyz+ (x+y+z) -(xy+yz+xz)-1=0 <=> (x-1)(y-1)(z-1)=0
vây tồn tại x=1 =>a=b^3 (đpcm")
Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1
c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1
=> A = 1+bc+b/bc+b+1 = 1
Tk mk nha
BÀI 1:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\) (thay abc = 1)
\(=\frac{a+ab+1}{a+ab+1}=1\)
\(-\frac{3}{5}xyz^2\cdot\frac{1}{3}xy\cdot\left(-\frac{1}{4}\right)x^5yz\)
\(=\left(-\frac{3}{5}\cdot\frac{1}{3}\cdot\frac{-1}{4}\right)\left(x\cdot x\cdot x^5\right)\left(y\cdot y\cdot y\right)\left(z^2\cdot z\right)\)
\(=\frac{1}{20}x^7y^3z^3\)
Bài 1:
Theo đề, ta có:
\(\dfrac{-13}{2}< \dfrac{11}{a}< \dfrac{-13}{3}\)
\(\Leftrightarrow\dfrac{-143}{26}< \dfrac{-143}{-13a}< \dfrac{-143}{33}\)
\(\Leftrightarrow\dfrac{143}{26}>\dfrac{143}{-13a}>\dfrac{143}{33}\)
hay \(a\in\varnothing\)
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=\left(\frac{1}{a}+\frac{1}{b}\right)^3+\left(\frac{1}{c}\right)^3-3.\frac{1}{a}.\frac{1}{b}\left(\frac{1}{a}+\frac{1}{b}\right)-\frac{3}{abc}\)
\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left[\left(\frac{1}{a}+\frac{1}{b}\right)^2-\left(\frac{1}{a}+\frac{1}{b}\right).\frac{1}{c}+\frac{1}{c^2}\right]-3.\frac{1}{a}.\frac{1}{b}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}-\frac{1}{ac}-\frac{1}{bc}+\frac{1}{c^2}\right)-\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{ac}-\frac{1}{bc}\right)\)