Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 - 6x + 9 - 16 = x2 - 6x - 7 = x2 + x - 7x - 7 = x(x+1) - 7(x+1) = (x-7)(x+1)
b) x4 - 64 = (x2 - 8)(x2 + 8)
(x2 - 2.x.3 +32 ) - 42
(x-3)2 - 42
(x-3-4)(x-3+4)
b)
(x2)2 - 82
(x2-8)(x2+8)
a,x4-4x3+8x2-16x+16
=x4-4x3+4x2+4x2-16x+16
=x2.(x-2)2+4.(x-2)2
=(x-2)2(x2+4)
a,x4-4x3+8x2-16x+16
=(x4-4x3+4x2)+(4x2-16x+16)
=(x^2-2x)^2+(2x-4)^2
=x^2(x-2)^2+4(x-2)^2
=(x-2)^2(x^2+4)
x^4 - 4x^3 - 8x^2 - 16x + 16
= x^4-8x^2+16-4x^3-16x
= ( x^2+4)^2 - 4x(x^2+4 )
= ( x^2 + 4 )(x^2 + 4 - 4x)
= (x^2 + 4 )( x - 2 )^2
\(x^{16}+x^8-2=x^{16}-x^8+2x^8-2=x^8\left(x^8-1\right)+2\left(x^8-1\right)\)
\(=\left(x^8+2\right)\left(x^8-1\right)=\left(x^8+2\right)\left(x^4+1\right)\left(x^4-1\right)\)
\(=\left(x^8+2\right)\left(x^4+1\right)\left(x^2+1\right)\left(x^2-1\right)\)
\(=\left(x^8+2\right)\left(x^4+1\right)\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\)
\(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
\(16^4+y^4=\left[\left(y^2\right)^2+2.y^2.16^2+\left(16^2\right)^2\right]-2.y^2.16^2=\left(y^2+16^2\right)^2-2.y^2.16^2\)
b tự tính tiếp nhé
ý b tương tự. ( gợi ý: thêm bớt hạng tử 16y^4 )
\(y^8+64\)
\(=\left(y^4\right)^2+2\cdot y^4\cdot8+8^2-2\cdot y^4\cdot8\)
\(=\left(y^4+8\right)^2-16y^4\)
\(=\left(y^4+8\right)^2-\left(4y^2\right)^2\)
\(=\left(y^4+8-4y^2\right)\left(y^4+8+4y^2\right)\)
a kudo shinichi làm rồi đó
\(a^4+16\)
\(\Leftrightarrow x^4+8x^2+16-8x^2\)
\(\Leftrightarrow\left(x^2+4\right)^2-8x^2\)
\(\Leftrightarrow\left(x^2+4-2\sqrt{2x}\right)\left(x^2+4+2\sqrt{2x}\right)\)
a4 + 16
= (a2)2+ 8a2 + 16 - 8a2
= (a2)2 + 2.4a2 + 42 - 8a2
= (a2+4)2 - 8a2
\(=\left(a^2+4\right)^2-\left(\sqrt{8}a\right)^2\)
\(=\left(a^2+4+\sqrt{8}a\right).\left(a^2+4-\sqrt{8}a\right)\)