Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( a - x )y3 - ( a - y )x3 + ( x - y )a3
= ay3 + a2y2 - ax2y - a2xy - a2y2 - a3y + a2x2 + a3x - xy3 - axy2 + x3y + ax2y + axy2 + a2xy - ax3 - a2x2
= ay( y2 +ay -x2 - ax ) - a2( y2 + ay -x2 -ax ) - xy( y2 + ay - x2 -ax ) + ax( y2 + ay -x2 -ax )
= ( y2 + ay - x2 - ax )( ay - a2 - xy + ax )
= ( y2 + xy +ay -xy -ax -x2 )[ ( y -a )a - x( y-a ) ]
= [ y( y +x +a ) - x( y + x + a )]( a - x )( a - y)
= ( y + x + a)( y -x )( a - x)( y - a)
bài a) bn trên đã dẫn link cho bn r
bài b)
Đặt x-y=a;y-z=b;z-x=c
\(=>a+b+c=x-y+y-z+z-x=0\)
\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=a^3+b^3+c^3\)
Theo câu a)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) (do a+b+c=0)
\(=>a^3+b^3+c^3=3abc=>\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
a) Ta có :
\(a^3+b^3+c^3-3abc\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
P/s tham khảo nha
hok tốt
\(\left(x-y\right)z^3+\left(y-z\right)x^3+\left(z-x\right)y^3\)
\(=\left(x-y\right)z^3-\left[\left(x-y\right)+\left(z-x\right)\right]x^3+\left(z-x\right)y^3\)
\(=\left(x-y\right)z^3-\left(x-y\right)x^3-\left(z-x\right)x^3+\left(z-x\right)y^3\)
\(=\left(x-y\right)\left(z^3-x^3\right)-\left(z-x\right)\left(x^3-y^3\right)\)
\(=\left(x-y\right)\left(z-x\right)\left(z^2+zx+x^2\right)-\left(z-x\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\left(x-y\right)\left(z-x\right)\left(z^2+zx+x^2-x^2-xy-y^2\right)\)
\(=\left(x-y\right)\left(z-x\right)\left[\left(x^2-x^2\right)+\left(zx-xy\right)+\left(z^2-y^2\right)\right]\)
\(=\left(x-y\right)\left(z-x\right)\left[x\left(z-y\right)+\left(z-y\right)\left(y+z\right)\right]\)
\(=\left(x-y\right)\left(z-x\right)\left(z-y\right)\left(x+y+z\right)\)
\(=-\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)\)
\(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
= x3 + y3 + z3 + 3(x + y )(y+z)(z + x) - x3- y3 - z3
= 3(x + y)(y + z)(z + x)
a, x^4 - 5x^2 + 4
= x^4 - 4x^2- x+ 4
= x^2 . (x^2 - 4) - (x^2 - 4)
= (x^2 - 4) . (x^2 - 1)
= (x - 2) . (x + 2) . (x - 1) . (x + 1)
(X + y)3 - (x - y)3 = ((x + y) - (x - y)) ((x + y)2 + (x + y)(x - y) + (x - y)2)
= (2y) (x2 + 2xy + y2 + x2 - y2 + x2 - 2xy + y2)
= 2y (3x2 + y2)
\(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-xy+xy-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
(x-y)3+(y-z)3+(z-x)3
=(x-y+y-z)[(x-y)2-(x-y)(y-z)+(y-z)2]+(z-x)3
=(x-z)[(x-y)2-(x-y)(y-z)+(y-z)2-(z-x)2]
=(x-z)[(x-y)(x-y-y+z)+(y-z+z-x)(y-z-z+x)]
=(x-z)(x-y)(x-2y+z-y+2z-x)
=3(x-z)(x-y)(z-y)
\(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x^3+y^3\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-\left(x^2-xy+y^2\right)\right]\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)
\(=3xy\left(x+y\right)\)
Ta có: (x-y)^3+(y-z)^3+(z-x)^3
Bạn để ý thấy (x-y)^3+(y-z)^3 là hằng đẳng thức dạng A^3+B^3=(A+B)(A^2-AB+B^2). Vậy ta có thể phân tích (x-y)^3+(y-z)^3 như sau
(x-y+y-z)((x-y)^2-(x-y)(y-z)+(y-z)^2)
(x-z)((x-y)^2-(x-y)(y-z)+(y-z)^2)
-(z-x)((x-y)^2-(x-y)(y-z)+(y-z)^2)
Đến đây thì bạn đã có nhân tử chung là (z-x)
Ta có: (x-y)^3+(y-z)^3+(z-x)^3
Bạn để ý thấy (x-y)^3+(y-z)^3 là hằng đẳng thức dạng A^3+B^3=(A+B)(A^2-AB+B^2). Vậy ta có thể phân tích (x-y)^3+(y-z)^3 như sau
(x-y+y-z)((x-y)^2-(x-y)(y-z)+(y-z)^2)
(x-z)((x-y)^2-(x-y)(y-z)+(y-z)^2)
-(z-x)((x-y)^2-(x-y)(y-z)+(y-z)^2)
Đến đây thì bn đã có nhân tử chung là (z-x).
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)z\left(x+y+z\right)+z^3-x^3-y^3-z^3\)
\(=x^3+y^3+z^3+3xy\left(x+y\right)+3\left(x+y\right)z\left(x+y+z\right)\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
`(x+y)^3-(x-y)^3`
`=(x+y-x+y)[(x+y)^2+(x+y)(x-y)+(x-y)^2]`
`=2y(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2)`
`=2y(3x^2+y^2)`