Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
Bài làm
a) 4x2 - 6x
= 2x( 2x - 3 )
b) 9x4y3 + 3x2y4
= 3x2y3( 3x2 + y )
c) x3 - 2x2 + 5x
= x( x2 - 2x + 5 )
d) 3x( x - 1 ) + 5( x - 1 )
= ( x - 1 )( 3x + 5 )
e) 2x2( x + 1 ) + 4( x + 1 )
= ( x + 1 )( 2x2 + 4 )
= ( x + 1 )2( x2 + 2 )
= 2( x + 1 )( x2 + 2 )
f) -3x - 6xy + 9xz
= -( 3x + 6xy - 9xz )
= -3x( 1 + 2y - 3z )
# Học tốt #
x6+3x4y2-8x3y3+3x2y4+y6= x6+3x4y2+3x2y4+y6-8x3y3=(x2+y2)3-(2xy)3
= (x2+y2-2xy)[(x2+y2)2+2xy(x2+y2)+(2xy)2]= (x-y)2(x4+6x2y2+y4+2x3y+2xy3)
(x2+y2-5)2-4x2y2-16xy-16=(x2+y2-5)2-(4x2y2+16xy+16)=(x2+y2-5)2-(2xy+4)2
=(x2+y2-5+2xy+4)(x2+y2-5-2xy-4)=(x2+2xy+y2-1)(x2-2xy+y2-9)=[(x+y)2-1][(x-y)2-32]=(x+y-1)(x+y+1)(x-y-3)(x-y+3)
x4+324=x4+36x2+324-36x2=(x2+18)2-(6x)2=(x2+18-6x)(x2+18+6x)
a) x3 - 1 + 5x2 - 5 + 3x - 3
= x3 + 5x2 + 3x - 9
= x3 + 6x2 - x2 + 9x - 6x - 9
= ( x3 + 6x2 + 9x ) - ( x2 + 6x + 9 )
= x( x2 + 6x + 9 ) - ( x2 + 6x + 9 )
= ( x2 + 6x + 9 )( x - 1 )
= ( x + 3 )2( x - 1 )
b) a5 + a4 + a3 + a2 + a + 1
= ( a5 + a4 + a3 ) + ( a2 + a + 1 )
= a3( a2 + a + 1 ) + 1( a2 + a + 1 )
= ( a2 + a + 1 )( a3 + 1 )
= ( a2 + a + 1 )( a + 1 )( a2 - a + 1 )
c) x3 - 3x2 + 3x - 1 - y3
= ( x3 - 3x2 + 3x - 1 ) - y3
= ( x - 1 )3 - y3
= ( x - 1 - y )[ ( x - 1 )2 + ( x - 1 )y + y2 ]
= ( x - 1 - y )( x2 - 2x + 1 + xy - y + y2 )
d) 5x3 - 3x2y - 45xy2 + 27y3
= ( 5x3 - 45xy2 ) - ( 3x2y - 27y3 )
= 5x( x2 - 9y2 ) - 3y( x2 - 9y2 )
= ( 5x - 3y )( x2 - 9y2 )
= ( 5x - 3y )[ x2 - ( 3y )2 ]
= ( 5x - 3y )( x - 3y )( x + 3y )
B1:
a) \(5\left(x^2+y^2\right)-20x^2y^2\)
\(=5\left(x^2-4x^2y^2+y^2\right)\)
b) \(=2\left(x^8-16\right)=2\left(x^4-4\right)\left(x^4+4\right)=2\left(x^2-2\right)\left(x^2+2\right)\left(x^4+4\right)\)
B2:
a) Đặt \(x^2-3x+1=y\)
=> \(y^2-12y+27\)
\(=\left(y^2-12y+36\right)-9\)
\(=\left(y-6\right)^2-3^2\)
\(=\left(y-9\right)\left(y-3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(=\left(x+1\right)\left(x-4\right)\left(x^2-3x-10\right)\)
b) Đặt \(x^2+7x+11=t\)
Ta có: \(\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
a,\(=x^4-3x^3+3x^3-9x^2-4x^2+12x-12x+36\)
\(=x^3\left(x-3\right)+3x^2\left(x-3\right)-4x\left(x-3\right)-12\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3+3x^2-4x-12\right)\)
\(=\left(x-3\right)[x^2\left(x+3\right)-4\left(x+3\right)]\)
\(=\left(x^2-9\right)\left(x^2-4\right)\)
a) \(x^3-3x^2-3x+1=x^3-3x-\left(3x^2-1\right)\)
\(=x\left(x^2-3\right)-\left(\sqrt{3x^2}-1\right)\left(\sqrt{3x^2}+1\right)\)
Naruto lục đạo:phân tích tiếp đi