K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2019

a) Ta có: x12 + 4

           =  x12 + 4x6 + 4 - 4x6

           =  (x6 + 2)2 - (2x3)2

           =  (x6 + 2 - 2x3).(x6 + 2 + 2x3)

           =  (x6 - 2x3 + 2).(x6 + 2x3 + 2)

           
 

3 tháng 7 2019

a, b sai đề nhé , sửa lại :

\(a,x^7+x^5+1=x^7+x^6+x^5-x^6+1=....\)

\(b,x^5+x+1=x^5-x^2+x^2+x+1=....\)

\(c,x^{11}+x+1=x^{11}-x^8+x^8-x^5+x^5-x^2+x^2+x+1=...\)

\(d,x^8+x^7+1=x^8+x^7+x^6-x^6+1=...\)

\(e,x^5+x^4+2x^2-1\)

Câu e tớ chịu , các câu trên tớ chỉ cho cậu hướng tách các hạng tử thôi, để cậu dễ dàng nhóm các nhân tử chung là \(x^2+x+1\), câu nào chưa làm được nữa thì để tớ giải rõ hơn nha

29 tháng 10 2018

\(x^8+x^7+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)+\left(x^7-x^5+x^4-x^2+x\right)+\left(x^6-x^4+x^3-x+1\right)\)

\(=x^2\left(x^6-x^4+x^3-x+1\right)+x\left(x^6-x^4+x^3-x+1\right)+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

2 tháng 11 2018

\(x^5-x^4-1\)

\(=x^5-x^3-x^2-x^4+x^2+x+x^3-x-1\)

\(=x^2\left(x^3-x-1\right)-x\left(x^3-x-1\right)+\left(x^3-x-1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)

19 tháng 11 2016

a, x8 + x7 + 1

=x2 (x6 - 1) + x (x6 - 1) +(x2 + x + 1)

= (x6 _ 1)(x2 + x) + (x2 + x +1)

= (x3 - 1)(x3 + 1)( x2 + x) + (x2 + x +1)

=(x - 1)(x2 + x +1)( x2 + x) + (x2 + x +1)

=(x2 + x +1)((x - 1)( x2 + x) +1)

=(x2 + x +1)(x3 + 1)

b, x5 - x4-1

c, x7+x5 + 1

d,x8 + x4 +1

Chú ý: Các đa thức có dạng: x3m+1+x3n+2+1 như x7+x2+1; x7+x5+1; x8 + x4 +1;

x5+x+1; x8+x+1 đều có nhân tử chung là x2 + x +1

Các phần còn lại tương tự nhé!!!

19 tháng 11 2016

cảm ơn ạ

22 tháng 8 2015

 

a) x7+ x+ 1

=x7-x+x2+x+1

=x.(x6-1)+(x2+x+1)

=x.(x3-1)(x3+1)+(x2+x+1)

=x.(x-1)(x2+x+1)(x3+1)+(x2+x+1)

=(x2+x+1)[x.(x-1)(x3+1)+1]

=(x2+x+1)(x5+x2-x4-x+1)

 

b) x5 + x+ 1

=x5+x4+x3+x2+x+1-x3-x2-x

=x3.(x2+x+1)+(x2+x+1)-x.(x2+x+1)

=(x2+x+1)(x3+1-x)

 

   

29 tháng 10 2018

\(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

5 tháng 8 2017

a, \(x^8+x^7+1\)\(\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

\(b,x^5-x^4-1\)\(=\left(x^2-x+1\right)\left(x^3-x+1\right)\) 

\(c,x^7+x^5+1\) = \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\) 

\(d,x^8+x^4+1=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\) 

18 tháng 2 2018

a, x8+x7+1(x2+x+1)(x6−x4+x3−x+1)

b,x5−x4−1=(x2−x+1)(x3−x+1) 

c,x7+x5+1 = (x2+x+1)(x5−x4+x3−x+1) 

d,x8+x4+1=(x2−x+1)(x2+x+1)(x4−x2+1) 

23 tháng 9 2019

Câu a, b, c :Câu hỏi của Nguyễn Tiến Đạt - Toán lớp 8 - Học toán với OnlineMath

Câu d, e, f:  Câu hỏi của Trịnh Ánh My - Toán lớp 8 - Học toán với OnlineMath

30 tháng 10 2016

\(A=\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)

Đặt \(x^2+x=t\), ta có:

\(A=t^2-14t+24\)

\(=t^2-2t-12t+24\)

\(=t\left(t-2\right)-12\left(t-2\right)\)

\(=\left(t-2\right)\left(t-12\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x-12\right)\)

\(B=\left(x^2+x\right)^2+4x^2+4x-12\)

\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

Đặt \(x^2+x=t\), ta có:

\(B=t^2+4t-12\)

\(=t^2+6t-2t-12\)

\(=t\left(t+6\right)-2\left(t+6\right)\)

\(=\left(t+6\right)\left(t-2\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+4=t\), ta có:

\(C=t\left(t+2\right)+1\)

\(=t^2+2t+1\)

\(=\left(t+1\right)^2\)

\(=\left(x^2+5x+4+1\right)^2\)

\(=\left(x^2+5x+5\right)^2\)

\(D=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+7=t\), ta có:

\(D=t\left(t+8\right)+15\)

\(=t^2+8t+15\)

\(=t^2+3t+5t+15\)

\(=t\left(t+3\right)+5\left(t+3\right)\)

\(=\left(t+3\right)\left(t+5\right)\)

\(=\left(x^2+8x+7+3\right)\left(x^2+8x+7+5\right)\)

\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(F=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(x^2+x+1=t\), ta có:

\(F=t\left(t+1\right)-12\)

\(=t^2+t-12\)

\(=t^2+4t-3t-12\)

\(=t\left(t+4\right)-3\left(t+4\right)\)

\(=\left(t+4\right)\left(t-3\right)\)

\(=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)

\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(E=x^4+2x^3+5x^2+4x-12\)

\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)

\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)

\(=\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)\)

\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

 

30 tháng 10 2016

siêng phết

a: \(=6x^3-12x^2+x^2-2x+x-2\)

\(=\left(x-2\right)\left(6x^2+x+1\right)\)

b: \(=3x^4+3x^3-x^3-x^2-7x^2-7x+5x+5\)

\(=\left(x+1\right)\left(3x^3-x^2-7x+5\right)\)

\(=\left(x+1\right)\left(3x^3-3x^2+2x^2-2x-5x+5\right)\)

\(=\left(x+1\right)\left(x-1\right)\left(3x^2+2x-5\right)\)

\(=\left(x-1\right)^2\cdot\left(x+1\right)\left(3x+5\right)\)

c: \(=4x^3+x^2+4x^2+x+4x+1\)

\(=\left(4x+1\right)\left(x^2+x+1\right)\)