K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

a, ( x + y )3 - x3 - y= x3+3x2y+3xy2+y3- x3 - y= 3x2y+3xy= 3xy( x + y) 

b, x+ y3 + z3 - 3xyz =  x + 3x2y+3xy2+y + z3 - 3x2y-3xy-3xyz = (x+y)^3 + z^3 - 3xy( x + y + z) 

(x+y+z)[(x+y)^2 - (x+y)z + z^2 ] - 3xy( x + y + z)  = (x+y+z) ( x^2 + 2xy + y^2 - xz - yz + z^2 ) - 3xy(x+y+z)

= (x+y+z) ( x^2 + 2xy + y^2 - xz - yz + z^2  - 3xy)

17 tháng 8 2017

bài tieps theo thì tách từng cái ra rồi rút gọc, còn bnhiu thì đưa 3 ra ngoài

Bài 1:

a)\(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)

b)\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)

c)Đề sai hoàn toàn

d) \(2x^2+4xy+2y^2-8z^2=2\left(x^2+2xy+y^2-4z^2\right)=2\left[\left(x+y\right)^2-\left(2z\right)^2\right]=2\left(x+y-2z\right)\left(x+y+2z\right)\)e) \(3x-3a+yx-ya=3\left(x-a\right)+y\left(x-a\right)=\left(x-a\right)\left(3+y\right)\)

f)\(\left(x^2+y^2\right)^2-4x^2y^2=\left(x-y\right)^2\left(x+y\right)^2\)

g)\(2x^2-5x+2=2x^2-x-4x+2=x\left(2x-1\right)-2\left(2x-1\right)=\left(2x-1\right)\left(x-2\right)\)

i)\(14x\left(x-y\right)-21y\left(y-x\right)+28z\left(x-y\right)=14x\left(x-y\right)+21y\left(x-y\right)+28z\left(x-y\right)=7\left(x-y\right)\left(2x+3y+4z\right)\)

11 tháng 12 2022

a: Sửa đề: x^3-x^2+5x-5

=x^2(x-1)+5(x-1)

=(x-1)(x^2+5)

b: x^3+4x^2+x-6

=x^3-x^2+5x^2-5x+6x-6

=(x-1)(x^2+5x+6)

=(x-1)(x+2)(x+3)

c: \(=\left(x+2\right)^3+y^3\)

\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)

28 tháng 1 2020

i. (x2+y2+z2).(x+y+z)2+(xy+yz+zx)2

24 tháng 5 2017

lười thế bạn nhân phá ra là được mà

24 tháng 5 2017

a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Biến đổi vế trái ta được :

\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)

\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)

\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

29 tháng 11 2018

x3-x+3x2y+3xy2+y3-y

=x2(x-1)+3(x2y+xy2)+y2(y-1)

=x2(x-1)+3(x2.y+y2.x)+y2(y-1)

=x2(x-1)+3{[x(x+1)+y(y+1)]}+y2(y-1)

=x2(x-1)+3.x(x+1)+3.y(y+1)+y2(y-1)

=x2(x-1)+2x2+3.x(x+1)+3.y(y+1)+y2(y-1)+2y2-2x2-2y2

=x2(x+1)+3.x(x+1)+3.y(y+1)+y2(y+1)-2x2-2y2

=(x2+3)(x+1)+(y2+3)(y+1)-2(x2+y2)

29 tháng 11 2018

ta có : (x*3+3x*2y+3xy*2+y*3)-(x+y)

=(x+y)*3-(x+y)

=(x+y)((X+Y)*2-1)

(x+y)(x+y+1)(x+Y-1)