Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài a) bn trên đã dẫn link cho bn r
bài b)
Đặt x-y=a;y-z=b;z-x=c
\(=>a+b+c=x-y+y-z+z-x=0\)
\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=a^3+b^3+c^3\)
Theo câu a)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) (do a+b+c=0)
\(=>a^3+b^3+c^3=3abc=>\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
a) Ta có :
\(a^3+b^3+c^3-3abc\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
P/s tham khảo nha
hok tốt
\(\left(a+b+c\right)^3-a^3-\left(b^3+c^3\right)=\left(b+c\right)\left[\left(a+b+c\right)^2+a\left(a+b+c\right)+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ca\right)=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(a^3+a^2c-abc+b^2c+b^3\)
\(=\left(a^3+b^3\right)+\left(a^2c+b^2c-abc\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+\)\(c\left(a^2+b^2-ab\right)\)
\(=\left(a^2+b^2-ab\right)\left(a+b+c\right)\)
a) Đặt a + b = x ; a - b = y. Khi đó:
\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(\Leftrightarrow x^3-y^3\)
\(\Leftrightarrow\left[x-y\right]\left[x^2+xy+y^2\right]\)
Thế lại vào ta có:
\(\Leftrightarrow\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(\Leftrightarrow\left[\left(a-a\right)+\left(b+b\right)\right]\left[\left(a^2+b^2+2ab\right)+\left(a^2-b^2\right)+\left(a^2+b^2-2ab\right)\right]\)
\(\Leftrightarrow2b\left[\left(a^2+a^2+a^2\right)+\left(b^2-b^2+b^2\right)+\left(2ab-2ab\right)\right]\)
\(\Leftrightarrow2b\left[3a^2+b^2\right]\)
Mik làm tuỳ theo mình piết thôi nhé
a) ( a + b )3- ( a - b )3= a3 + b3 - a3 - b3 = a3 - a3 + b3 - b3 = 0
b) tương tự như ở trên!!! Hơi khác một tí!!!
c) ( 6x - 1 )2 - ( 3x + 2 ) = ..........
\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a+b-a+b\right)\left(\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right)\)
\(=2b\left(\left(a+b\right)^2+\left(a^2-b^2\right)+\left(a-b\right)^2\right)\)
\(\left(a+b\right)^3+\left(a-b\right)^3\)
\(=\left(a+b+a-b\right)\left(\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right)\)
\(=2a\left(\left(a+b\right)^2-\left(a^2-b^2\right)+\left(a-b\right)^2\right)\)
a) (a+b)3 -(a-b)3 = a3 + 3a2b + 3ab2 +b3 - a3 + 3a2b - 3ab2 +b3
= 2a3 + 6a2b + 2b3
(a-b)3 + (b-c)3 + (c-a)3
=a3 - 3a2b + 3ab2- b3 + b3 - 3b2c + 3bc2- c3 + c3 - 3c2a + 3ca2- a3
=(-3a2b) + 3ab2 - 3b2c + 3bc2 - 3c2a +3ca2
=(-3a2b) + 3(ab2 - b2c + bc2 - c2a + ca2)
=(-3a2b) + 3[ab2 - b(bc - c2) - c(ca - a2)]
\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)+b\left[\left(c^3-b^3\right)-\left(a^3-b^3\right)\right]+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)
\(=\left(b^3-c^3\right)\left(a-b\right)-\left(a^3-b^3\right)\left(b-c\right)\)
\(=\left(b-c\right)\left(b^2+ac+c^2\right)\left(a-b\right)-\left(a-b\right)\left(a^2+ab+b^2\right)\left(b-c\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(b^2+ac+c^2-a^2-ab-b^2\right)\)
a) \(4a^3b^3c^2x+12a^3b^4c^2-16a^4b^5cx\)
\(=4a^3b^3c\left(cx+3bc-4ab^2x\right)\)
b) \(\left(b-2c\right)\left(a-b\right)-\left(a+b\right)\left(2c-b\right)\)
\(=\left(b-2c\right)\left(a-b+a+b\right)=2a\left(b-2c\right)\)
c) \(3a\left(a+5\right)-2\left(5+a\right)=\left(a+5\right)\left(3a-2\right)\)
d) \(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)\)
a) Áp dụng hằng đẳng thức (x + y)3 = x3 + y3 + 3xy(x + y) ta có:
(a + b + c)3 - a3 - b3 - c3 = [(a + b) + c]3 - a3 - b3 - c3
= (a + b)3 + c3 + 3(a + b)c(a + b + c) - a3 - b3 - c3
= a3 + b3 + 3ab(a + b) + c3 + 3c(a + b)(a + b + c) - a3 - b3 - c3
= 3(a + b)(ab + ac + bc + c2) = 3(a + b)[a(b + c) + c(b + c)]
= 3(a + b)(b + c)(a + c)