Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi dấu – (4yx2 + yz2)(z – y2) = (4yx2 + yz2)( y2 – z), ta có thừa số
(y2 – z) chung:
C = (y2 – z)(2x2y – yz) – (4yx2 + yz2)(z – y2) + 6x2z(y2 – z)
= (y2 – z)(2x2y – yz) + (4yx2 + yz2)( y2 – z) + 6x2z(y2 – z)
= (y2 – z)[( 2x2y – yz ) + (4yx2 + yz2) + 6x2z]
= (y2 – z)[ 2x2y + 4yx2 + 6x2z]
= (y2 – z)[ 2xy2 + 4yx2 + 6x2z]
= (y2 – z)[ 2x2(y + 2y + 3z)]
= (y2 – z)[ 2x2(3y + 3z)]
= (y2 – z) 2x2 .3(y + z)
= 6x2(y2 – z)(y + z).
a) 7x2 - 4x
= x ( 7x - 4 )
b) 5x2 - 2x + 10 xy - 4y
= x ( 5x - 2 ) + 2y ( 5x - 2 )
= ( x + 2y ) ( 5x - 2 )
Ta nhân thấy nghiệm của f(x) nếu có thì x = , chỉ có f(2) = 0 nên x = 2 là nghiệm của f(x) nên f(x) có một nhân tử là x – 2. Do đó ta tách f(x) thành các nhóm có xuất hiện một nhân tử là x – 2
Cách 1:
x3 – x2 – 4 =(x3-2x2)+(x2-2x)+(2x-4)=x2(x-2)+x(x-2)+2(x-2)=(x-2)(x2+x+2)
Cách 2:
(x-2)[(x2+2x+4)-(x+2)]=(x-2)(x2+x+2)
x3-x2-4=x3-8-x2+4=(x3-8)-(x2-4)=(x-2)(x2+2x+4)-(x-2)(x+2)
a)x2+5x-6
=x2+6x-x-6
=x(x+6)-(x+6)
=(x-1)(x+6)
b)7x-6x2-2
=-6x2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
c)x2+4x+3
=x2+3x+x+3
=x(x+3)+(x+3)
=(x+1)(x+3)
d)2x2+3x-5
=2x2+5x-2x-5
=x(2x+5)-(2x+5)
=(x-1)(2x+5)
- a] =-[6x^2 - 7x +2] = - [ 6x^2 - 3x - 4x + 2 ] = -[ 3x [ 2x-1] - 2 [2x - 1]] = - [ 2x - 1] [3x - 2 ]
Mình viết xuôi theo dạng ax2 + bx + c nhé ;-; cho dễ làm
a) 2x2 + 7x + 3 = 2x2 + x + 6x + 3 = x( 2x + 1 ) + 3( 2x + 1 ) = ( 2x + 1 )( x + 3 )
b) 3x2 - 8x + 4 = 3x2 - 6x - 2x + 4 = 3x( x - 2 ) - 2( x - 2 ) = ( x - 2 )( 3x - 2 )
c) 3x2 - 7x + 2 = 3x2 - 6x - x + 2 = 3x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 3x - 1 )
d) -6x2 + 7x - 2 = -6x2 + 3x + 4x - 2 = -3x( 2x - 1 ) + 2( 2x - 1 ) = ( 2x - 1 )( 2 - 3x )
e) -3x2 + 7x - 2 = -3x2 + 6x + x - 2 = -3x( x - 2 ) + ( x - 2 ) = ( x - 2 )( 1 - 3x )
f) 2x2 - 5x + 2 = 2x2 - 4x - x + 2 = 2x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 2x - 1 )
g) 3x2 - 8x + 4 = 3x2 - 6x - 2x + 4 = 3x( x - 2 ) - 2( x - 2 ) = ( x - 2 )( 3x - 2 )
h) 6x2 - 11x + 3 = 6x2 - 2x - 9x + 3 = 2x( 3x - 1 ) - 3( 3x - 1 ) = ( 3x - 1 )( 2x - 3 )
i) 2x2 + 3x - 27 = 2x2 - 6x + 9x - 27 = 2x( x - 3 ) + 9( x - 3 ) = ( x - 3 )( 2x + 9 )
j) 4x2 - 5x + 1 = 4x2 - 4x - x + 1 = 4x( x - 1 ) - ( x - 1 ) = ( x - 1 )( 4x - 1 )
1,
\(a,7x-6x^2-2=-6x^2+7x-2=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)=\left(2x-1\right)\left(2-3x\right)\)
\(b,2x^2+3x-5=2x^2-2x+5x-5\)
\(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
\(c,16x-5x^2-3=-5x^2+x+15x-3\)
\(=-x\left(5x-1\right)+3\left(5x-1\right)=\left(5x-1\right)\left(3-x\right)\)
2,
\(a+b+c=0=>a+b=-c=>\left(a+b\right)^3=\left(-c\right)^3\)
\(=>a^3+b^3+3a^2b+3ab^2=-c^3\)
\(=>a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(=>a^3+b^3+c^3=-3ab\left(-c\right)=3abc\)(vì a+b=-c)
\(2x^2+3x-5\)
\(=2x^2-2x+5x-5\)
\(=2x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x-1\right)\left(2x+5\right)\)
a) \(6x^2-x-1\)
\(=6x^2-3x+2x-1\)
\(=3x\left(2x-1\right)+\left(2x-1\right)\)
\(=\left(3x+1\right)\left(2x-1\right)\)
a) \(7x^3y-3xyz-21x^2+9z\)
\(=7x^2\left(xy-3\right)-3z\left(xy-3\right)\)
\(=\left(7x^2-3z\right)\left(xy-3\right)\)
b) \(4x^2-2x-y^2-y\)
\(=\left[\left(2x\right)^2-y^2\right]-\left(2x+y\right)\)
\(=\left(2x-y\right)\left(2x+y\right)-\left(2x+y\right)\)
\(=\left(2x+y\right)\left(2x-y-1\right)\)
c) \(9x^2-25y^2-6x+10y\)
\(=\left(3x\right)^2-\left(5y\right)^2-2\left(3x-5y\right)\)
\(=\left(3x-5y\right)\left(3x+5y\right)-2\left(3x-5y\right)\)
\(=\left(3x-5y\right)\left(3x+5y-2\right)\)
d) \(\left(5x-4\right)^2+\left(16-25x^2\right)+\left(5x-4\right)\left(3x+2\right)\)
\(=\left(5x-4\right)\left[\left(5x-4\right)+\left(3x+2\right)\right]+\left(4^2-\left(5x\right)^2\right)\)
\(=\left(5x-4\right)\left(8x-2\right)+\left(4-5x\right)\left(4+5x\right)\)
\(=\left(4-5x\right)\left(2-8x\right)+\left(4-5x\right)\left(4+5x\right)\)
\(=\left(4-5x\right)\left[\left(2-8x\right)+\left(4+5x\right)\right]\)
\(=\left(4-5x\right)\left(6-3x\right)\)
a: \(-6x^2+7x-2\)
\(=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(-3x+2\right)\)
b: \(2x^2-5x+2\)
\(=2x^2-4x-x+2\)
\(=2x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(2x-1\right)\)