Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8x2-2x-1=9x2-x2-2x-1=(3x)2-(x2+2x+1)
=(3x)2-(x+1)2=(3x-x-1)(3x+x+1)=(2x-1)(4x+1)
đề dài nên T giải câu a thôi bn tự làm tiếp mấy câu khác nhé
2x^2 - 2y^2 - 6x - 6y
= 2(x^2-y^2) - 6(x+ y)
= 2(x-y)(x+y) - 6(x+y)
= (2(x-y)-6) (x+y)
1: \(6x^2y-9xy^2+3xy\)
\(=3xy\left(2x-3y+1\right)\)
2: \(\left(4-x\right)^2-16\)
\(=\left(4-x-4\right)\left(4-x+4\right)\)
\(=-x\cdot\left(8-x\right)\)
3: \(x^3+9x^2-4x-36\)
\(=x^2\left(x+9\right)-4\left(x+9\right)\)
\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)
1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)
2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)
3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
a) \(2x^2-2y^2\)
\(=2\left(x^2-y^2\right)\)
\(=2\left(x-y\right)\left(x+y\right)\)
b) \(x^2-4x+4\)
\(=x^2-2\cdot x\cdot2+2^2\)
\(=\left(x-2\right)^2\)
c) \(x^2+2x+1-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x-y+1\right)\left(x+y+1\right)\)
d) \(x^2-4x\)
\(=x\left(x-4\right)\)
e) \(x^2+10x+25\)
\(=x^2+2\cdot x\cdot5+5^2\)
\(=\left(x+5\right)^2\)
g) \(x^2-2xy+y^2-9\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
h) \(2x^2-2\)
\(=2\left(x^2-1\right)\)
\(=2\left(x-1\right)\left(x+1\right)\)
i) \(5x^2-5xy+9x-9y\)
\(=5x\left(x-y\right)+9\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+9\right)\)
k) \(y^2-4y+4-x^2\)
\(=\left(y-2\right)^2-x^2\)
\(=\left(y-x-2\right)\left(y+x-2\right)\)
l) \(x^2-16\)
\(=x^2-4^2\)
\(=\left(x-4\right)\left(x+4\right)\)
m) \(3x^2-3xy+2x-2y\)
\(=3x\left(x-y\right)+2\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+2\right)\)
o) \(3x^4-6x^3+3x^2\)
\(=3x^2\left(x^2-2x+1\right)\)
\(=3x^2\left(x-1\right)^2\)
a) 2x2 - 2y2
= (2x - 2y)(2x + 2y)
= 4(x - y)(x + y)
b) x2 - 4x + 4
= (x - 2)2
c) x2 + 2x + 1 - y2
= (x + 1)2 - y2
= (x + 1 - y)(x + 1 + y)
d) x2 - 4x
= x(x - 4)
e) x2 +10x + 25
= (x + 5)2
g) x2 - 2xy + y2 - 9
= (x - y)2 - 32
= (x - y - 3)(x - y + 3)
h) 2x2 - 2
= 2(x2 - 1)
= 2(x - 1)(x + 1)
i) 5x2 - 5xy + 9x - 9y
= 5x(x - y) + 9(x- y)
= (5x + 9)(x - y)
k) y2 - 4y + 4 - x2
= (y - 2)2 - x2
= (y - 2 - x)(y - 2 + x)
l) x2 - 16
= x2 - 42
= (x - 4)(x + 4)
m) 3x2 - 3xy + 2x -2y
= 3x(x - y) +2(x-y)
= (3x + 2)(x - y)
o) 3x4 - 6x3 + 3x2
= 3x4 - 3x3 - 3x3 + 3x2
= 3x3(x - 1) - 3x2(x - 1)
= (3x3 - 3x2)(x - 1)
= 3x2(x - 1)(x - 1)
= 3x2.(x - 1)2
\(x^2-y^2+10x-6y+16\)
\(=\left(x^2+10x+25\right)-\left(y^2+6y+9\right)\)
\(=\left(x+5\right)^2-\left(y+3\right)^2\)
\(=\left(x+5-y-3\right)\left(x+5+y+3\right)\)
\(=\left(x-y+2\right)\left(x+y+8\right)\)
a) 8x^2 - 2x - 1
=8x2+2x-4x-1
=2x(4x+1)-(4x+1)
=(2x-1)(4x+1)
b) 6x^2 + 7xy + 2y^2
=4xy+6x2+4y2+3xy
=2x(2y+3x)+y(2y+3x)
=(2y+3x)(y+2x)
c) chịu
d)x^3 + x + 2
Ta thấy :x=-1 là nghiệm của đa thức (đây là dùng pp nhẩm nghiệm nhé)
=>đa thức có 1 hạng tử là x+1
=>(x+1)(x2-x+2) (nếu bn cần cách khác thì nhắn vs mk)
e) x^3 - 2x - 1
lí luận tương tự phần d
=>(x+1)(x2-x-1)
f) x^3 + 3x^2 - 4
lí luận tương tự phần d
=(x-1)(x2+4x+4)
=(x-1)(x+2)2
g) x^2 - 15x + 14
=x2-x-14x+14
=x(x-1)-14(x-1)
=(x-14)(x-1)
a) \(8x^2-2x-1=\left(4x^2-2x\right)+\left(4x^2-1\right)=2x\left(2x-1\right)+\left(2x-1\right)\left(2x+1\right)=\left(2x-1\right)\left(4x+1\right)\)
b) \(6x^2+7xy+2y^2=\left(6x^2+3xy\right)+\left(4xy+2y^2\right)=3x\left(2x+y\right)+2y\left(2x+y\right)=\left(2x+y\right)\left(3x+2y\right)\)
c) \(9x^2-9xy-4y^2=\left(9x^2-y^2\right)-\left(9xy+3y^2\right)=\left(3x-y\right)\left(3x+y\right)-3y\left(3x+y\right)=\left(3x+y\right)\left(3x-4y\right)\)
d) \(x^3+x+2=\left(x^3+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^2-x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^2-x+2\right)\)
e) \(x^3-2x-1=\left(x^3-x\right)-\left(x+1\right)=x\left(x-1\right)\left(x+1\right)-\left(x+1\right)=\left(x+1\right)\left(x^2-x-1\right)\)
f) \(x^3+3x^2-4=\left(x^3-1\right)+\left(3x^2-3\right)=\left(x-1\right)\left(x^2+x+1\right)+3\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x^2+x+1+3x+3\right)=\left(x-1\right)\left(x^2+4x+4\right)=\left(x-1\right)\left(x+2\right)^2\)
g) \(x^2-15x+14=x^2-x+14-14x=x\left(x-1\right)-14\left(x-1\right)=\left(x-1\right)\left(x-14\right)\)
phân tích đa thức thành nhân tử
a, 6x^2 + 7xy + 2y^2
=6x^2+3xy+4xy+2y^2
=3x(x+y)+2y(x+y)
=(3x+2y)(x+y)
b, 9x^2 - 9xy - 4y^2
=9x^2 +3xy-12xy-4y^2
=3x(x+y)-4y(x+y)
=(3x+4y)(x+y)
c, x^2 - y^2 + 10x - 6y + 16=x^2-y^2+6x-6y+4x+16=x(x+6)-y(x+6)+4(x+6)=(x-y+4)(x+6)
Bài làm
a, 6x2 + 7xy + 2y2
= 6x2 + 3xy + 4xy + 2y2
= ( 6x2 + 3xy ) + ( 4xy + 2y2 )
= 3x( 2x + y ) + 2y( 2x + y )
= ( 2x + y )( 3x + 2y )
b, 9x2 - 9xy - 4y2
= 9x2 - 12xy + 3xy - 4y2
= ( 9x2 - 12xy ) + ( 3xy - 4y2 )
= 3x( 3x - 4y ) + y ( 3x - 4y )
= ( 3x + y )( 3x - 4y )
c, x2 - y2 + 10x - 6y + 16
= x2 - y2 - 6x + 6y + 4x + 16
= x( x + 6 ) - y( x + 6 ) + 4( x + 6 )
= ( x - y + 4 )( x + 6 )
# Học tốt #