Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 4x2 - y2 + 4x + 4y - 3
= (4x2 - 4x + 1) - (y2 - 4y + 4)
= (2x - 1)2 - (y - 2)2
= (2x - 1 -y + 2)(2x - 1 + y - 2)
= (2x - y + 1)(2x + y - 3)
\(4x^2-y^2+4x+4y-3\)
\(=\left(4x^2+4x+1\right)-\left(y^2-4y+4\right)\)
\(=\left(2x+1\right)^2-\left(y-2\right)^2\)
\(=\left(2x+1+y-2\right)\left(2x+1-y+2\right)\)
\(=\left(2x+y-1\right)\left(2x-y+3\right)\)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)
\(=2x^4+6x^3+9x^2+6x+2\)(bạn nhân phá ngoặc rồi thu gọn nhé)
\(=\left(2x^4+2x^3+x^2\right)+\left(4x^3+4x^2+2x\right)+\left(4x^2+4x+2\right)\)
\(=x^2\left(2x^2+2x+1\right)+2x\left(2x^2+2x+1\right)+2\left(2x^2+2x+1\right)\)
\(=\left(x^2+2x+2\right)\left(2x^2+2x+1\right)\)
d) \(x^2-y^2-2x+2y\)
\(=\left(x^2-2x+1\right)-\left(y^2-2y+1\right)\)
\(=\left(x-1\right)^2-\left(y-1\right)^2\)
\(=\left(x-1-y+1\right)\left(x-1+y-1\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
\(4xy^2-12x^2y+8xy\)
\(=4xy\left(y-3x+2\right)\)
\(3x^2-6xy+3y^2-12z^2\)
\(=3.\left(x^2-2xy+y^2-4z^2\right)\)
\(=3.\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3.\left(x-y-2z\right)\left(x-y+2z\right)\)
\(x^4y^4+4=\left[\left(x^2y^2\right)^2+2..x^2y^2.2+2^2\right]-\left(2xy\right)^2\)
\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)
a) \(\left(a+b\right)^3+\left(a+b\right)^3\)
\(=\left(a+b+a+b\right)\left[\left(a+b\right)^2-2\left(a+b\right)^2+\left(a+b\right)^2\right]\)
\(=2\left(a+b\right)\left[\left(a+b\right)^2\left(1-2+1\right)\right]\)
\(=2\left(a+b\right)\)
b) \(9x^2+6xy+y^2\)
\(=\left(3x+y\right)^2\)
\(=\left(3x+y\right)\left(3x+y\right)\)
c) \(4x^2-25\)
\(=\left(2x\right)^2-5^2\)
\(=\left(2x+5\right)\left(2x-5\right)\)
b ) Ta có : 3x2 - 7x - 6
= 3x2 - 9x + 2x - 6
= 3x (x - 3) + 2(x - 3)
= (x - 3)(3x + 2)
\(\frac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}=\frac{\left(x^4-x^2-2\right)+\left(x^3-2x\right)}{\left(x^4-x^2-2\right)+\left(2x^3-4x\right)}\)
\(=\frac{\left(x^2-2\right)\left(x^2+1\right)+x\left(x^2-2\right)}{\left(x^2-2\right)\left(x^2+1\right)+2x\left(x^2-2\right)}=\frac{\left(x^2-2\right)\left(x^2+x+1\right)}{\left(x^2-2\right)\left(x^2+2x+1\right)}\)
\(=\frac{x^2+x+1}{\left(x+1\right)^2}\)
\(F\left(x\right)=\frac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}\)
\(=\frac{\left(x^4+x^3+x^2\right)-2x^2-2x-2}{\left(x^4+2x^3+x^2\right)-\left(2x^2+4x+2\right)}\)
\(=\frac{x^2\left(x^2+x+1\right)-2\left(x^2+x+1\right)}{x^2\left(x^2+2x+1\right)-2\left(x^2+2x+1\right)}=\frac{x^2+x+1}{x^2+2x+1}\)
\(3x-4x^2+7=-\left(4x^2-3x-7\right)=-\left(x+1\right)\left(4x-7\right)\)
3x-4x2+7
=-4x2+3x+7
=-4x2-4x+7x+7
=-(4x2+4x)+(7x+7)
=-4x(x+1)+7(x+1)
=(x+1)(-4x+7)