Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-5x+6\right)\left(x^2-5x+2\right)-5\)
\(\text{Phần tích thành nhân tử :}\)
\(\left(x^2-5x+2\right)\left(x^2-5x+7\right)\)
\(\left(x^2+8x-5\right)\left(x^2+8x+1\right)-16\)
\(\text{Phần tích thành nhân tử :}\)
\(\left(x^2+8x-7\right)\left(x^2+8x+3\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)-3\backslash2.x^2\)
\(\text{Phần tích thành nhân tử :}\)
Lười lắm
a) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x( x + 3 ) + 4( x + 3 ) = ( x + 3 )( x + 4 )
b) x2 - 10x + 16 = x2 - 2x - 8x + 16 = x( x - 2 ) - 8( x - 2 ) = ( x - 2 )( x - 8 )
c) x2 + 6x + 8 = x2 + 2x + 4x + 8 = x( x + 2 ) + 4( x + 2 ) = ( x + 2 )( x + 4 )
d) x2 - 8x + 15 = x2 - 3x - 5x + 15 = x( x - 3 ) - 5( x - 3 ) = ( x - 3 )( x - 5 )
e) x2 - 8x - 9 = x2 + x - 9x - 9 = x( x + 1 ) - 9( x + 1 ) = ( x + 1 )( x - 9 )
f) x2 + 14x + 48 = x2 + 6x + 8x + 48 = x( x + 6 ) + 8( x + 6 ) = ( x + 6 )( x + 8 )
1. \(x\left(x^2-5xy-14y^2\right)=x\left(x^2-7xy+2xy-14y^2\right)\)
\(=x\left(x-2\right)\left(x-7\right)\)
2. \(x^4+2x^2+1-9x^2=\left(x^2+1\right)^2-\left(3x\right)^2=\left(x^2+1-3x\right)\left(x^2+1+3x\right)\)
3. \(4x^4+4x^2+1-16x^2=\left(2x^2+1\right)^2-\left(4x\right)^2=\left(2x^2-4x+1\right)\left(2x^2+4x+1\right)\)
4. \(x^2+x+7x+7=\left(x+7\right)\left(x+1\right)\)
5. \(x\left(x^2-5x-14\right)=x\left(x^2-7x+2x-14\right)=x\left(x+2\right)\left(x-7\right)\)
Phân tích đa thức thành nhân tử :
1.x3-5x2y-14xy2
2.x4-7x2+1
3.4x4-12x2+1
4.x2+8x+7
5.x3-5x2-14x
a, \(3x^2-9x-2x+6=3x\left(x-3\right)-2\left(x-3\right)=\left(x-3\right)\left(3x-2\right)\)
b. \(8x^2-2x+12x-3=2x\left(4x-1\right)+3\left(4x-1\right)=\left(4x-1\right)\left(2x+3\right)\)
c. đề kiểu gì vậy? -2x-x để thành -3x à? xem lại đi nha
d. \(\left(x^2+10x+25\right)-\left(y^2+6y+9\right)=\left(x+5\right)^2-\left(y+3\right)^2=\left(x+5-y-3\right)\left(x+5+y+3\right)=\left(x-y+2\right)\left(x+y+8\right)\)
e. \(=x^4+2x^2y^2+y^4-x^2y^2=\left(x^2+y^2\right)^2-x^2y^2=\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)\)
nhớ L I K E
1)x2-8x-9
= x^2 - 9x +x -9
= x(x+1) - 9 (x+1)
= (x-9) (x+1)
2)x2+3x-18
3)x3-5x2+4x
=x^3 - 4x^2 - x^2 + 4x
= x^2 (x-1) - 4x(x-1)
= (x^2 - 4x) (x-1)
= x(x-4)(x-1)
4)x3-11x2+30x
5)x3-7x-6
6)x16-64
\(=\left(x^8\right)^2-8^2\)
\(=\left(x^8-8\right)\left(x^8+8\right)\)
7)x3-5x2+8x-4
8)x2-3x+2
= x^2 - 2x - x +2
= x(x-1) -2(x-1)
= (x-2)(x-1)
1) \(\left(x-9\right)\left(x+1\right)\) 2) \(\left(x-3\right)\left(x+6\right)\) 3) \(x\left(x-4\right)\left(x-1\right)\)
4) \(x\left(x-6\right)\left(x-5\right)\) 5)\(\left(x-3\right)\left(x+1\right)\left(x+2\right)\) 6) ........
7) \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\) 8) \(\left(x-2\right)\left(x-1\right)\)
phân tích đa thức ->nhân tử:
a)2x2+4x-70
b)x3-5x2+8x-4
c)x2-10+16
rút gọn:
(8x-8x3-10x2+3x4-5):(3x2-2x+1)
Bài 1:
a)2x2+4x-70
=2(x2+2x-35)
=2(x2+7x-5x-35)
=2[x(x+7)-5(x+7)]
=2(x-5)(x+7)
b)x3-5x2+8x-4
=x3-4x2+4x-x2+4x-4
=x(x2-4x+4)-(x2-4x+4)
=(x2-4x+4)(x-1)
=(x-2)2(x-1)
c)x2-10x+16
=x2-2x-8x+16
=x(x-2)-8(x-2)
=(x-8)(x-2)
Bài 2:
\(\frac{8x-8x^3-10x^2+3x^4-5}{3x^2-2x+1}=\frac{\left(x^2-2x-5\right)\left(3x^2-2x+1\right)}{3x^2-2x+1}=x^2-2x-5\)
a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24
= (x+2)(x+5)(x+3)(x+4)-24
= (x^2+7x+10)(x^2+7x+12)-24
Đặt x^2+7x+11 = a thay vào A ta được :
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2)
Thế a vào (2) ta được :
A=(x^2+7x+11-5)(x^2+7x+11+5)
= (x^2+7x+6)(x^2+7x+16)
b) = (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
d) 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)
Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1 nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)
Vậy 2x4 - 3x3 - 7x2 + 6x + 8 = (x-2)(x+1)(2x2-x-4)
a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)
\(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)
\(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)
\(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)
\(=\left(x^2+x-1\right)^2-1=24\)
\(=\left(x^2+x-1\right)^2=25\)
xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé
\(1,4x^4+4x^2y^2-8y^4\)
\(=4\left(x^4+x^2y^2-y^4-y^4\right)\)
\(=4\left[\left(x^4-y^4\right)+\left(x^2y^2-y^4\right)\right]\)
\(=4\left[\left(x^2+y^2\right)\left(x^2-y^2\right)+y^2\left(x^2-y^2\right)\right]\)
\(=4\left(x^2-y^2\right)\left(x^2+y^2+y^2\right)\)
\(=4\left(x-y\right)\left(x+y\right)\left(x^2+2y^2\right)\)
\(2,12x^2y-18xy^2-30y^3\)
\(=6y\left(2x^2-3xy-5y^2\right)\)
\(=6y\left[\left(2x^2+2xy\right)-\left(5xy+5y^2\right)\right]\)
\(=6y\left[2x\left(x+y\right)-5y\left(x+y\right)\right]\)
\(=6y\left(x+y\right)\left(2x-5y\right)\)
1) x4 - 81 = (x2 - 9)(x2 + 9)
= (x - 3)(x + 3)(x2 + 9)
2) x5 - 5x3 + 4x
= x(x4 - 5x2 + 4)
= x(x4 - x2 - 4x2 + 4)
= x[x2(x2 - 1) - 4(x2 - 1)]
= x(x2 - 1)(x2 - 4)
= x(x - 1)(x + 1)(x - 2)(x + 2)
\(x^3-5x^2+8x-4\)
\(=x^3-x^2-4x^2+4x+4x-4\)
\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)