Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a(b2-c2)+b(c2-a2)+c(a2-b2)
= a(b+c)(b-c) + bc2 - ba2 + ca2 - cb2
= a(b+c)(b-c) - ( cb2 - bc2) - ( ba2 - ca2)
= (ab+ac)(b-c) - bc(b-c) - a2(b-c)
= (b-c)(ab+ac - bc- a2)
= (b-c) [( ab -bc) -(a2-ac)] ( tự làm tiếp nhá )
=(b-c)(a-c)(b-a)
= ( a-b)(b-c)(c-a)
phần b tự làm nhá.... bye
Đăng từng bài thui bn êi ~.~
\(h)\)\(\left(xy+1\right)^2-\left(x+y\right)^2\)
\(=\)\(\left(xy-x-y+1\right)\left(xy+x+y+1\right)\)
\(=\)\(\left[x\left(y-1\right)-\left(y-1\right)\right].\left[x\left(y+1\right)+\left(y+1\right)\right]\)
\(=\)\(\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)
\(i)\)\(16b^2c^2-4\left(b^2+c^2-a^2\right)^2\)
\(=\)\(\left(4bc\right)^2-\left(2b^2+2c^2-2a^2\right)^2\)
\(=\)\(\left(4bc-2b^2-2c^2+2a^2\right)\left(4bc+2b^2+2c^2-2a^2\right)\)
\(=\)\(2\left[a^2-\left(b^2-2bc+c^2\right)\right].2\left[\left(b^2+2bc+c^2\right)-a^2\right]\)
\(=\)\(-4\left[a^2-\left(b-c\right)^2\right].\left[a^2-\left(b+c\right)^2\right]\)
\(=\)\(-4\left(a-b+c\right)\left(a+b-c\right)\left(a-b-c\right)\left(a+b+c\right)\)
Chúc bạn học tốt ~
\(A=a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]+4abc\)
\(=a\left(b-c+a\right)\left(b-c-a\right)+b\left(c-a+b\right)\left(c-a-b\right)+c\left(a-b+c\right)\left(a-b-c\right)+4abc\)
\(=\left(a+b-c\right)\left(ab-ac-a^2-bc+ab-b^2\right)+c\left(a^2-2ab+b^2-c^2+4ab\right)\)
\(=\left(a+b-c\right)\left[-c\left(a+b\right)-\left(a-b\right)^2\right]+c\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(a+b-c\right)\left(-ca-cb-a^2+2ab-b^2+ac+cb+c^2\right)\)
\(=\left(a+b-c\right)\left(c^2-\left(a-b\right)^2\right)\)
\(=\left(a+b-c\right)\left(c+a-b\right)\left(a+b-c\right)\)
câu hỏi tương tự
Điểm sao thì ít
Ngồi làm thì nhiều
Ai cho sao tôi
Thì thương tôi với
Phân tích đa thức thành nhân tử
a) (1-2x)(1+2x)-x(x+2)(x-2)
\(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x^3\right)+\left(4x-4x^2\right)\)
\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2+6ab^3-b^4\)
\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a-b\right)\left(a+b\right)-8ab\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3+6a^2b+6ab^2-8a^2b-8ab^2\right)\)
\(=\left(a-b\right)\left(a^3-a^2b-ab^2+b^3\right)\)
\(=\left(a-b\right)\left[a^2\left(a-b\right)-b^2\left(a-b\right)\right]\)
\(=\left(a-b\right)^3\left(a+b\right)\)
1) \(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)