Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2019x^2+2018x+2019\)
\(=x^4-x^3+x^3+2019x^2-x^2+x^2+2019x-x+2019\)
\(=\left(x^4-x^3+2019x^2\right)+\left(x^3-x^2+2019x\right)+\left(x^2-x+2019\right)\)
\(=x^2\left(x^2-x+2019\right)+x\left(x^2-x+2019\right)+\left(x^2-x+2019\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)
a, =x4-x + 2019x2+2019x+2019
=x(x3-1)+2019(x2+x+1)
=x(x-1)(x2+x+1)+2019(x2+x+1)
=(x2-x+2019)(x2+x+1)
b, =(x-y+y-z)[(x-y)2-(x-y)(y-z)+(y-z)2 ] + (z-x)3
=(x-z)(x2-2xy+y2-xy+xz+y2-yz+y2-2yz+z2) - (x-z)3
=(x-z)(x2-2xy+y2-xy+xz+y2-yz+y2-2yz+z2-x2+2xz-z2)
=(x-z)(-3xy+3y2+3xz-3yz)
=3(x-z)(-xy+y2+xz-yz)
=3(x-z)[(-xy+xz)+(y2-yz)]
=3(x-z)[-x(y-z)+y(y-z)]
=3(y-x)(x-z)(y-z)
a) \(x^4+2019x^2+2018x+2019\)
\(=\left(x^4-x\right)+\left(2019x^2+2019x+2019\right)\)
\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2019\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)
b) \(E=2x^2-8x+1=2x^2-8x+8-7\)
\(=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\Rightarrow E\ge-7\)
Dấu "=" xảy ra <=> \(2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy MinE = -7 <=> x = 2
b) \(E=2x^2-8x+1\)
\(E=2\left(x^2-4x+\frac{1}{2}\right)\)
\(E=2\left(x^2-2\cdot x\cdot2+2^2+\frac{7}{2}\right)\)
\(E=2\left[\left(x-2\right)^2+\frac{7}{2}\right]\)
\(E=2\left(x-2\right)^2+7\ge7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy....
Ta có : x4 + 2018x2 + 2017x + 2018
= x4 - x + 2018x2 + 2018x + 2018
= x(x3 - 1) + 2018(x2 + x + 1)
= x(x - 1)(x2 + x + 1) + 2018(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 2018)
<=>x4-x+x2 +x+1= x (x-1) (x2+x+1) + (x2+x+1) = (x2+x+1)(x2-x+1)
chắc có lẽ đúng đó
= (x^4-4x^3)+(3x^3-12x^2)+(2x^2-8x)-(2x-8)
= x^3.(x-4)+3x^2.(x-4)+2x.(x-4)-2.(x-4)
= (x-4).(x^3+3x^2+2x-2)
Tk mk nha