Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm nốt
d) (2x-1)(3x+2)(3-x)
=(6x2+x-2)(3-x)
=-6x3+17x2+5x-6
e) (x+3)(x2+3x-5)
=x3+6x2+4x-15
f) (xy-2)(x3-2x-6)
=x4y-2x3-2x2y-6xy+4x+12
g) (5x3-x2+2x-3)(4x2-x+2)
=20x5-9x4+19x3-16x2+7x-6
Bài 1:
a) (x-2)(x2+3x+4)
=x(5x+4)-2(5x+4)
= 5x2+4x-10x-8
=5x2-6x-8
b: \(=x^4+x^2+36-2x^3+12x^2-12x+x^2-6x+9\)
\(=x^4-2x^3+14x^2-18x+45\)
\(=x^4+9x^2-2x^3-18x+5x^2+45\)
\(=\left(x^2+9\right)\left(x^2-2x+5\right)\)
d: \(=2x^4+2x^3+6x^2-x^3-x^2-3x+x^2+x+3\)
\(=\left(x^2+x+3\right)\left(2x^2-x+1\right)\)
e: \(=3x^4-3x^3-3x^2-2x^3+2x^2+2x+2x^2-2x-2\)
\(=\left(x^2-x-1\right)\left(3x^2-2x+1\right)\)
câu c:x^4-2x^3-x^2+x^3-2x^2-x+5x^2-10x-5=x^2(x^2-2x-1)+x(x^2-2x-1)+5(x^2-2x-1)=(x^2-2x-1)(x^2+x+5)
b, \(\left(x^2+x\right)^2+4x^2+4x-12=x^4+2x^3+x^2+4x^2+4x-12\)
\(=x^4+2x^3+5x^2+4x-12\)
\(=\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x^3+3x^2+8x+12\right)\left(x-1\right)\)
\(=\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]\left(x-1\right)\)
\(=\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
c, \(x^3+3x^2-4=\left(x^3+2x^2\right)+\left(x^2+2x\right)-\left(2x+4\right)\)
\(=x^2\left(x+2\right)+x\left(x+2\right)-2\left(x+2\right)\)
= \(\left(x^2+x-2\right)\left(x+2\right)\)
a)\(x^5+x^4+1=x^5-\left(-x^3+x^3\right)+x^4+\left(x^2-x^2\right)+\left(x-x\right)+1\)
\(=x^5-x^3+x^2+x^4-x^2+x+x^3-x+1\)
\(=x^2\left(x^3-x+1\right)+x\left(x^3-x+1\right)+\left(x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
b,c có ng lm rồi
d)\(2x^4-3x^3-7x^2+6x+8\)
Ta thấy x=-1 là nghiệm của đa thức
=>đa thức có 1 hạng tử là x+1
\(\Rightarrow\left(x+1\right)\left(2x^3-5x^2-2x+8\right)\)
\(\Rightarrow\left(x+1\right)\left[2x^3-x^2-4x-4x^2+2x+8\right]\)
\(\Rightarrow\left(x+1\right)\left[x\left(2x^2-x-4\right)-2\left(2x^2-x-4\right)\right]\)
\(\Rightarrow\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)
phần còn lại bạn tự lo nhé
\(e,-5x+x^2-14\)
\(=x^2+2x-7x-14\)
\(=x\left(x+2\right)-7\left(x+2\right)\)
\(=\left(x+2\right)\left(x-7\right)\)
\(f,x^3+8+6x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+2x+4\right)+6x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+8x+4\right)\)
\(g,15x^2-7xy-2y^2\)
\(=15x^2+3xy-10xy-2y^2\)
\(=3\left(5x+y\right)-2y\left(5x+y\right)\)
\(=\left(5x+y\right)\left(3-2y\right)\)
\(h,3x^2-16x+5\)
\(=3x^2-x-15x+5\)
\(=x\left(3x-1\right)+5\left(3x-1\right)\)
\(=\left(3x-1\right)\left(x+5\right)\)
\(a,x^3+2x^2y+xy^2=x\left(x^2+2xy+y^2\right)\)
\(=x\left(x+y\right)^2\)
\(b,4x^2-9y^2+4x-6y\)
\(=4x^2+4x+1-\left(9y^2+6y+1\right)\)
\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)
\(=\left(2x-3y\right)\left(2x+3y+2\right)\)
\(c,-x^2+5x+2xy-5y-y^2\)
\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)
\(=-\left(x-y\right)^2+5\left(x-y\right)\)
\(=\left(x-y\right)\left(y-x+5\right)\)
\(d,x^2+4x-12\)
\(=x^2-2x+6x-12\)
\(=x\left(x-2\right)+6\left(x-2\right)\)
\(=\left(x-2\right)\left(x+6\right)\)
mk ghi đáp án, còn lại bạn tự biến đổi
a) \(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4=\left(x+1\right)\left(x+2\right)^2\)
c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
d) \(4x^4+1=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
e) \(x^4-7x^3+14x^2-7x+1=\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)
mk làm chi tiết theo yêu của của người hỏi đề:
a) \(2x^3-x^2+5x+3\)
\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4\)
\(=\left(x^3+4x^2+4x\right)+\left(x^2+4x+4\right)\)
\(=x\left(x^2+4x+4\right)+\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x+2\right)^2\)
\\(x^3+x^2-x+2\\)
=x3+2x2-x2-2x+x+2
=(x3+2x2)-(x2+2x)+(x+2)
=x2(x+2)-x(x+2)+(x+2)
=(x+2)(x2-x+1)
b. \\(x^3-6x^2-x+30\\)
=x3+2x2-8x2-16x+15x+30
=(x3+2x2)-(8x2+16x)+(15x+30x)
=x2(x+2)-8x(x+2)+15(x+2)
=(x+2)(x2-8x+15)
=(x+2)(x2-5x-3x+15)
=(x+2)[(x2-5x)-(3x-15)]
=(x+2)[x(x-5)-3(x-5)]
=(x+2)(x-5)(x-3)
h)\(a^6+a^4+a^2b^2+b^4-b^6\)
\(=\left(a^4+a^2b^2+b^4\right)+\left(a^6-b^6\right)\)
\(=\left(a^4+a^2b^2+b^4\right)+\left[\left(a^2\right)^3-\left(b^2\right)^3\right]\)
\(=\left(a^4+a^2b^2+b^4\right)+\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)
\(=\left(a^4+a^2b^2+b^4\right)\left(1+a^2-b^2\right)\)
\(a,=x^2-6x-x+6=\left(x-6\right)\left(x-1\right)\\ b,=x\left(x^2-4x+4\right)=x\left(x-2\right)^2\\ c,=x^3-x^2+2x^2-2x+2x-2=\left(x-1\right)\left(x^2+2x+2\right)\\ d,=x^2+2x+3x+6=\left(x+2\right)\left(x+3\right)\\ e,=x^2\left(x-6\right)+\left(x-6\right)=\left(x^2+1\right)\left(x-6\right)\\ f,=x^3\left(x^2+1\right)+\left(x^2+1\right)=\left(x^3+1\right)\left(x^2+1\right)\\ =\left(x+1\right)\left(x^2-x+1\right)\left(x^2+1\right)\)
a) \(x^2-7x+6\)
\(=x^2-x-6x+6\)
\(=x\left(x-1\right)-6\left(x-1\right)\)
\(=\left(x-6\right)\left(x-6\right)\)