Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left(x^2-2x+3\right)\left(x^2-2x+5\right)-8\). Rút gọn A,ta được:
\(A=x^4-4x^3+12x^2-16x+7\)
\(=x^4-2x^3+x^2-2x^3+4x^2-2x+7x^2-14x+7\)
\(=x^2\left(x^2-2x+1\right)-2x\left(x^2-2x+1\right)+7\left(x^2-2x+1\right)\)
\(=\left(x^2-2x+1\right)\left(x^2-2x+7\right)\)
\(=\left(x-1\right)^2\left(x^2-2x+7\right)\)
Ok chứ?
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
Đặt x2 + 4x + 8 = A. Ta sẽ được:
A2 + 3xA + 2x2
= A2 - xA - 2xA + 2x2
= A(A-x) - 2x(A-x)
= (A-x)(A-2x)
= (x2+3x+8)(x2+2x+8)
=x2 (1-x2 ) + 2x2 (x+1)
=-x2 (x2-1) + 2x2 (x+1)
= -x2 (x+1)(x-1) + 2x2 (x-1)
Đến đây đã xuất hiện nhân tử chung là (x-1)
Em chỉ việc nhóm vào là xong
Chúc em học giỏi!
a ) ( x2 + 2x + 5 )( x2 + 2x + 3 ) - 8
= ( x2 + 2x + 5 )[ ( x2 + 2x + 5 ) - 2 ] - 8
= ( x2 + 2x + 5 )2 - 2 . ( x2 + 2x + 5 ) + 1 - 9
= ( x2 + 2x + 5 - 1 )2 - 9
= ( x2 + 2x + 4 )2 - 33
= ( x2 + 2x + 4 - 3 )( x2 + 2x + 4 + 3 )
= ( x2 + 2x + 1 )( x2 + 2x + 7 )
b ) ( x2 + 2x )( x2 + 2x - 2 ) - 3
= ( x2 + 2x )[ ( x2 + 2x ) - 2 ] - 3
= ( x2 + 2x )2 - 2 . ( x2 + 2x ) + 1 - 4
= ( x2 + 2x - 1 )2 - 22
= ( x2 + 2x - 1 - 2 )( x2 + 2x - 1 + 2 )
= ( x2 + 2x - 3 )( x2 + 2x + 1 )
= ( x2 + 2x - 3 )( x + 1 )2
trả lời :
- \(\left(x^2+2x+5\right)\left(x^2+2x+3\right)\)
Đặt: \(x^2+2x+5=t\Rightarrow x^2+2x+3=t+2\),ta có:
\(t\left(t+2\right)-8\)
\(=t^2+2t-8\)
\(=t^2+4t-2t-8\)
\(=t\left(t+4\right)-2\left(t+4\right)\)
\(=\left(t+4\right)\left(t-2\right)\)
Thay vào cách đặt , ta có:
\(\left(x^2+2x+5+4\right)\left(x^2+2x+5-2\right)\)
\(=\left(x^2+2x+9\right)\left(x^2+2x+3\right)\)
\(=\left(x^2+2x+9\right)\left(x^2+3x-x+3\right)\)
\(=\left(x^2+2x+9\right)\left(x+3\right)\left(x-1\right)\)
- \(\left(x^2+2x\right)\left(x^2+2x-2\right)-3\)
Đặt : \(x^2+2x=t\Rightarrow\left(x^2+2x-2\right)=t-2\),ta có:
\(t\left(t-2\right)-3\)
\(=t^2-2t-3\)
\(=t^2-3t+t-3\)
\(=t\left(t-3\right)+\left(t-3\right)\)
\(=\left(t-3\right)\left(t+1\right)\)
Thay vào cách đặt, ta có:
\(\left(x^2+2x-3\right)\left(x^2+2x+1\right)\)
\(=\left(x^2+3x-x-3\right)\left(x+1\right)^2\)
\(=\left(x+3\right)\left(x-1\right)\left(x+1^2\right)\)
#hok tốt #
\(x^3+x^2+2x+8\)
\(=x^3+2x^2-x^2-2x+4x+8\)
\(=x^2\left(x+2\right)-x\left(x+2\right)+4\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-x+4\right)\)