Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+81\)
\(=x^4+3^4\)
\(=\left(x^2+3^2\right)^2-2x^23^2\)
\(=\left(x^2+\sqrt{2}x3+3^2\right)\left(x^2-\sqrt{2}x3+3^2\right)\)
nguồn gg
\(x^4+81\)
\(=x^4+18x^2+81-18x^2\)
\(=\left(x^2+9\right)^2-18x^2\)
\(=\left(x^2-3\sqrt{2}x+9\right)\left(x^2+3\sqrt{2}x+9\right)\)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
khó quá mk nản chí rùi huhu!!
3463465655775676876897756232544545465657578768
a, \(x^5+x^4+1\)
\(\Leftrightarrow x^5+x^4-x^2+\frac{1}{4}-\frac{1}{4}+x^2\)
\(\Leftrightarrow x^5+\left(x^2-\frac{1}{2}\right)^2-\frac{1}{4}+x^2\)
\(\Leftrightarrow x^2\left(x^3+1\right)+\left(x^2-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(\Leftrightarrow x^2\left(x+1\right)\left(x^2-x+1\right)+\left(x^2-\frac{1}{2}+\frac{1}{2}\right)\left(x^2-\frac{1}{2}-\frac{1}{2}\right)\)
ta có :x^5 +x^4 +1=x^5-x^2 +x^4 -x +x^2 +x +1=x^2(x^3-1) +x(x^3 -1)+x^2 +x +1=x^2(x-1)(x^2+x+1)+x(x-1)(x^2 +x+1) +x^2 +x +1=(x^2 +x +1)(x^3 -x^2 +x^2 -x +1)=(x^2 +x+1)(x^3-x+1)
a) \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
b) \(x^2+x-12=x^2+4x-3x-12=x.\left(x+4\right)-3.\left(x+4\right)=\left(x+4\right)\left(x-3\right)\)
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-2x^2\)
\(=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)
\(x^8+x^4+1\)
\(=x^4.\left(x^4+1\right)+\left(x^4+1\right)-x^4\)
\(=\left(x^4+1\right).\left(x^4+1\right)-\left(x^2\right)^2\)
\(=\left(x^4+1\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+1-x^2\right).\left(x^4+1+x^2\right)\)
Ta có : x5 + x + 1
= x5 + x4 + x3 + x2 + x + 1 - x4 - x3 - x2
= (x5 + x4 + x3) + (x2 + x + 1) - (x4 + x3 + x2)
= x3(x2 + x + 1) + (x2 + x + 1) - x2(x2 + x + 1)
= (x2 + x + 1)(x3 - x2 + 1) .
Ta có : x5 + x + 1
= x5 + x4 + x3 + x2 + x + 1 - x4 - x3 - x2
= (x5 + x4 + x3) + (x2 + x + 1) - (x4 + x3 + x2)
= x3(x2 + x + 1) + (x2 + x + 1) - x2(x2 + x + 1)
= (x2 + x + 1)(x3 - x2 + 1) .