Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)
\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)
b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)
\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)
đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha
c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)
d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.
có gì liên hệ chị. đúng nha ;)
Hướng dẫn
Đặt là x,y,z
Chứng minh được là \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
dễ ợt
a. x^36 - 64 = (x^18)^2 - 8^2 rồi áp dụng hằng đẳng thức số 3 . câu b tương tự
thì 2 câu trên cho dễ vậy để mọi người chú ý
chứ quan trọng là 2 câu cuối kia kìa
d) x^6 + y^6 = (x^2)^3 + (y^2)^3
= (x^2 + y^2)(X^2 - x^2.y^2 + y^2)
c) = (x+y)^3 + 3(x+y)^2z + 3((x+y)z^2 + z^3 - X^3 - Y^3 - z^3
= (x+y)^3 + 3(x+y)^2z + 3((x+y)z^2 - (x+y)(x^2 - xy + y^2)
= (x+y)[(x+y)^2 + 3(x+y)z + 3z^2 - x^2 + xy - y^2]
= (X+y)(x^2 + 2xy + y^2 + 3xz + 3yz + 3z^2 - x^2 + xy - y^2)
= (x+y)(3xy + 3xz + 3z^2 + 3yz)
= (x+y)[3x(y+z) + 3z(y+z)]
=3(x+y)(y+z)(x+z)
Đúng thì
=