K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

\(b,\left(b-a\right)^2+\left(a-b\right)\left(3a-2b\right)-a^2+b^2\)

\(=\left(a-b\right)^2+\left(a-b\right)\left(3a-2b\right)-\left(a^2-b^2\right)\)

\(=\left(a-b\right)^2+\left(a-b\right)\left(3a-2b\right)-\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left[\left(a-b\right)+\left(3a-2b\right)-\left(a+b\right)\right]\)

\(=\left(a-b\right)\left(a-b+3a-2b-a-b\right)\)

\(=\left(a-b\right)\left(3a-4b\right)\)

23 tháng 12 2018

\(Suade:x^2-x-6\)

\(x^2-x-6=x^2+2x-3x-6=x\left(x+2\right)-3\left(x+2\right)\)

\(=\left(x-3\right)\left(x+2\right)\)

23 tháng 11 2016

a, Dùng phương pháp đổi biến (đầu tiên ghép cặp (x+2) với (x+5) và cặp còn lại, rồi đổi biến)

b, Dùng phương pháp thêm bớt cùng 1 hạng tử 

c,  Dùng phương pháp nhóm hang tử

23 tháng 11 2016

thank nha 

16 tháng 6 2018

a) a3+a2c-abc+b2c+b=(a3+b3)+(a2c-abc+b2c)=(a+b)(a2-ab+b2)+c(a2-ab+b2)=(a2-ab+b2)(a+b-c)

b) x3-7x-6 = x3+x2-x2-x-6x-6=x2(x+1)-x(x+1)-6(x+1)=(x+1)(x2-x-6)=(x+1)(x-3)(x+2)

c) x3-x2-14x+24=x3-2x2+x2-2x-12x+24=x2(x-2)+x(x-2)-12(x-2)=(x-2)(x2+x-12)=(x-2)(x+4)(x-3)

17 tháng 6 2018

Thank bn. 

12 tháng 2 2016

xin lỗi e mới lớp 7 ak

12 tháng 2 2016

moi hok lop 6

19 tháng 12 2017

a)  a2 + b2 + 2ab + 2a + 2b + 1

= (a2 + b2 + 2ab) + (2a + 2b) + 1

= (a + b)2 + 2(a + b) + 1

= (a + b + 1)2

b)  a3 - 3a + 3b - b3

= (a3 - b3) - (3a - 3b)

= (a - b)(a2 - ab + b2) - 3(a - b)

= (a - b)(a2 - ab + b2 - 3)

c)  x2 + 2x - 15

= (x2 + 2x + 1) - 16

= (x + 1)2 - 16

= (x + 1 - 5)(x + 1 + 5)

= (x - 4)(x + 6)

d)  a4 + 6a2b + 9b2 - 1

= (a2 + 3b)2 - 1

= (a2 + 3b - 1)(a2 + 3b + 1)

1 tháng 2 2018

2, a^3-3ab^2 = 5

<=> (a^3-3ab^2)^2 = 25

<=> a^6-6a^4b^2+9a^2b^4 = 25

b^3-3a^2b=10

<=> (b^3-3a^2b)^2 = 100

<=> b^6-6a^2b^4+9a^4b^2 = 100

=> 100+25 = a^6-6a^4b^2+9a^2b^4+b^6+6a^2b^4+9a^4b^2

<=> 125 = a^6+3a^4b^2+3a^3b^4+b^6 = (a^2+b^2)^3

<=> a^2+b^2 = 5

Khi đó : S = 2016.(a^2+b^2) = 2016.5 = 10080

Tk mk nha

1 tháng 2 2018

1) \(x^2+6xy+5y^2-5y-x=\left(x^2+xy-x\right)+\left(5xy+5y^2-5y\right)\)

\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)

\(=\left(x+5y\right)\left(x+y-1\right)\)

2) Ta có : \(a^3-3ab^2-5\Rightarrow\left(a^3-3ab^2\right)^2=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)

và \(b^3-3a^2b=10\Rightarrow\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2+9a^4b^2=100\)

\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)

Hay \(125=\left(a^2+b^2\right)^2\Rightarrow a^2+b^2=5\)

Nên \(S=2016\left(a^2+b^2\right)=2016.5=10080\)

29 tháng 11 2019

Câu a bạn xét giá trị riêng nha

A=x2(y-z) + y2(z-x) + z2(x-y)

Thay x bởi y, ta có 

A= y2 (y-z) + y2(z-y) + z2(y-y) = 0

=> A chứa nhân tử x-y

Tương tự A chứa nhân tử y-z, z-x

=> A có tích (x-y)(y-z)(z-x)

Ta thấy biểu thức A có bậc 3, tích (x-y)(y-z)(z-x) cũng có bậc là 3 nên A có dạng tổng quát: A= k(x-y)(y-z)(z-x)   ( k thuộc R)

Ta có đẳng thức :   x2(x-y)  + y2(z-x) +z2( x-y) = k(x-y)(y-z)(z-x)     với mọi x,y,z

Cho x=0,y=1,z=2 => -2 = 2k  => k=-1

Vậy A= -(x-y)(y-z)(z-x)

29 tháng 11 2019

b) a7 + a +1 = a7 + a6 - a6 - a5 +a+ a4 -a4 - a3 + a3 + a2 +a +1

                   = a6 (a+1) - a5 (a+1) +a4 (a+1) -a3 (a+1) +a2(a+1) +(a+1)

                   =(a+1)( a6 - a5 + a4 - a3 + a2 +1)

18 tháng 12 2018

Phân tích đa thức thành nhân tử
a) (1-2x)(1+2x)-x(x+2)(x-2)

\(=1-4x^2-x\left(x^2-4\right)\)

\(=1-4x^2-x^3+4x\)

\(=\left(1-x^3\right)+\left(4x-4x^2\right)\)

\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)

\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)

\(=\left(1-x\right)\left(x^2+5x+1\right)\)

18 tháng 12 2018

\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)

\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2+6ab^3-b^4\)

\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)

\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a-b\right)\left(a+b\right)-8ab\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3+6a^2b+6ab^2-8a^2b-8ab^2\right)\)

\(=\left(a-b\right)\left(a^3-a^2b-ab^2+b^3\right)\)

\(=\left(a-b\right)\left[a^2\left(a-b\right)-b^2\left(a-b\right)\right]\)

\(=\left(a-b\right)^3\left(a+b\right)\)