K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2019

a) \(x^4+5x^3+10x-4\)

\(=\left(x^4+2x^2\right)+\left(5x^3+10x\right)-\left(2x^2+4\right)\)

\(=x^2\left(x^2+2\right)+5x\left(x^2+2\right)-2\left(x^2+2\right)\)

\(=\left(x^2+2\right)\left(x^2+5x-2\right)\)

\(=\left(x^2+2\right)\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}-2\right)\)

\(=\left(x^2+2\right)\left[\left(x+\frac{5}{2}\right)^2-\frac{33}{4}\right]\)

\(=\left(x^2+2\right)\left[\left(x+\frac{5}{2}\right)^2-\left(\frac{\sqrt{33}}{2}\right)^2\right]\)

\(=\left(x^2+2\right)\left(x+\frac{5}{2}-\frac{\sqrt{33}}{2}\right)\left(x^2+\frac{5}{2}+\frac{\sqrt{33}}{2}\right)\)

b) \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+2xy-zx-zy+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-zx-zy\right)\)

22 tháng 9 2019

Bạn tải ứng dụng PhotoMath về nha. Ứng dụng này sẽ giải toán số chi tiết

22 tháng 9 2019

a) \(x^3-4x^2-12x+27\)

\(=\left(x^3+27\right)-\left(4x^2+12x\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)

b) \(x^3-3x^2-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x^2-4\right)\left(x-3\right)\)

\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)

a) \(9x^2+6xy+y^2=\left(3x+y\right)^2\)

b) \(6x-9-x^2=-\left(x-3\right)^2\)

15 tháng 7 2016

a)x^2-(a+b)x+ab

= x^2 - ax - bx + ab

= (x^2 - ax) - (bx - ab)

= x(x-a) - b(x-a)

= (x-b)(x-a) 

b)7x^3-3xyz-21x^2+9z

c)4x+4y-x^2(x+y)

= 4(x + y) - x^2(x+y)

= (4-x^2) (x+y)

= (2-x)(2+x)(x+y)

d) y^2+y-x^2+x

= (y^2 - x^2) + (x+y)

= (y-x)(y+x)+ (x+y)

= (y-x+1) (x+y)

e)4x^2-2x-y^2-y

= [(2x)^2 - y^2] - (2x +y)

= (2x-y)(2x+y) - (2x+y)

= (2x -y -1)(2x+y)

f)9x^2-25y^2-6x+10y

31 tháng 8 2021

ko biết làm

 

30 tháng 10 2016

(x - 4)(x2 + 4x + 16) - x(x2 - 6) = 2

x3 - 64 - x3 + 6x = 2

6x = 2 + 64

6x = 66

x = 66 : 6

x = 11

x3 - 27 + 3x(x - 3)

= (x - 3)(x2 + 3x + 9) + 3x(x - 3)

= (x - 3)(x2 + 3x + 9 + 3x)

= (x - 3)(x2 + 6x + 9)

= (x - 3)(x + 3)2

5x3 - 7x2 + 10x - 14

= 5x(x2 + 2) - 7(x2 + 2)

= (x2 + 2)(5x - 7)

30 tháng 10 2016

mk cám ơn nhiều ạ

22 tháng 10 2017

BẠn ơi , bạn đã có đáp án câu d chưa ? Mk cx đang thắc mắc câu đó nè. Nếu có đáp án thì cho mk xin nha

30 tháng 10 2017

Hello

13 tháng 7 2017

a)\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

b)\(x^4-5x^2+4=x^4-4x^2-x^2+4=x^2\left(x^2-4\right)-\left(x^2-4\right)=\left(x^2-4\right)\left(x^2-1\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

c)\(\left(x+y+z\right)^3-x^3-y^3-z^3=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2-\left(x^3+y^3\right)\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2+3\left(x+y\right)z+3z^2-\left(x^2-xy+y^2\right)\right]\)

\(=\left(x+y\right)\left(x^2+2xy+y^2+3xz+3yz+3z^2-x^2+xy-y^2\right)\)

\(=\left(x+y\right)\left(3xy+3xz+3yz+3z^2\right)\)

\(=\left(x+y\right)\left[3x\left(y+z\right)+3z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

d) \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-\left(3x^2y+3xy^2+3xyz\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

3 tháng 9 2018

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)z\left(x+y+z\right)+z^3-x^3-y^3-z^3\)

\(=x^3+y^3+z^3+3xy\left(x+y\right)+3\left(x+y\right)z\left(x+y+z\right)\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)