Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 16x2(x - y)2 - 10y(y - x)3
= 16x2(y - x)2 - 10y(y - x)3
= 2(y - x)2[8x2 - 5y(y - x)]
= 2(y - x)2(8x2 + 5xy - 5y2)
b) a2 -b2 + 4ab - 9 (sai đề)
Mấy câu trên dễ
\(M=4a^2-6a+12\)
\(M=\left(2a\right)^2-2\cdot2a\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{39}{4}\)
\(M=\left(2a-\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\forall x\left(đpcm\right)\)
1. a) 2x2y - 3xy2 - 6x + 9y = 2x( xy - 3 ) - 3y ( xy - 3) = ( 2x - 3y)(xy - 3)
b) x2 - 2x + 8 = x2 - 2x + 12 - 1 + 9 = ( x - 1 )2 + 32 ( xem lại đề bài )
2. a) ( 2x - 1) 2 - (2x-1)(2x+3) = 5
(2x-1)(2x-1-2x-3) = 5
-4(2x-1) = 5
2x - 1 = -1,25
2x = -0,25
x= -0,125
b) x(x-9 ) = 0
x= 0 hoặc x = 9
c, ko hiểu
3, M = (2a)2 - 2.2a.1,5 + ( 1,5)2 + 9,75
M= ( 2a - 1,5)2 + 9,75
Vì ( 2a - 1,5 )2 \(\ge\)0 \(\forall x\)
\(\Rightarrow\)( 2a - 1,5)2 + 9,75 \(\ge9,75\forall x\)
Vậy biểu thức trên luôn dương
\(x^2-y^2+4x+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
\(4x^2-y^2+8\left(y-2\right)\)
\(=4x^2-\left(y^2-8y+16\right)\)
\(=4x^2-\left(y-4\right)^2\)
\(=\left(2x+y-4\right)\left(2x-y+4\right)\)
\(a,y-x^2y+2xy^2-y^3=y(1-x^2+2xy-y^2) =y[1-(x^2-2xy+y^2)]=y[1-(x-y)^2] =y(1-x+y)(1+x-y) =y(x+y-1)(x-y+1) \)
a,\(6x^3y^2-9x^2y^3+1^2x^2y^2\)
\(=x^2y^2\left(6x-9y+1\right)\)
b,\(2x\left(x-1\right)+3\left(1-x\right)\)
\(=2x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(2x-3\right)\left(x-1\right)\)
a,
\(6x^3y^2-9x^2y^3+1\cdot x^2\cdot y^2\)
\(=x^2y^2\left(6x-9y+1\right)\)
b,
\(2x\left(x-1\right)+3\left(1-x\right)\)
\(=2x\left(x-1\right)+3\cdot-1\left(x-1\right)\)
\(=2x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(2x-3\right)\left(x-1\right)\)
a)x4-1=(x2-1)(x2+1)=(x-1)(x+1)(x2+1)
b)x2-y2-2x+2y=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)
c)x2-6x-y2+9=(x2-6x+9)-y2=(x-3)2-y2=(x-y-3)(x+y-3)
d)5x2+3(x+y)2-5y2
=5(x2-y2)+3(x+y)2
=5(x-y)(x+y)+3(x+y)2
=(x+y)(5x-5y+3x+3y)
=(x+y)(8x-2y)
a) \(6a^2b^2c-4ab^2c^2+12a^2bc^2\)
\(=2abc\left(3ab-2bc+6ac\right)\)
b)\(x^2\left(x-y\right)-y\left(y-x\right)\)
\(=x^2\left(x-y\right)+y\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+y\right)\)