K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

1, x3+ 6x2+11x+6

= x3 + 2x2 + 4x2 + 8x + 3x + 6 

= x2(x + 2) + 4x(x + 2) + 3(x + 2)

= (x + 2)(x2 + 4x + 3)

2, x4+3x3-7x2-27x-18

= x4 + 3x3 - 9x2 + 2x2 - 27x -18

= (x4 - 9x2) + (3x3 - 27x) + (2x2 - 18)

= x2(x2 - 9) + 3x(x2 - 9) + 2(x2 - 9)

= (x2 - 9)(x2 + 3x + 2)

= (x + 3)(x - 3)(x2 + 3x + 2)

3, x3-8x2+x+42

= x3 - 7x2 - x2 + 7x - 6x + 42

= (x3 - 7x2) - (x2 - 7x) - (6x - 42)

= x2(x - 7) - x(x - 7) - 6(x - 7)

= (x - 7)(x2 - x - 6) 

4, x4+5x3-7x2-41x-30 

= x4 + x3 + 4x3 - 4x2 - 11x2 - 11x - 30x - 30

= (x4 + x3) + (4x3 - 4x2) - (11x2 + 11x) - (30x + 30)

= x3(x + 1) + 4x2(x + 1) - 11x(x + 1) - 30(x + 1)

= (x3 + 4x2 - 11x - 30)(x + 1)

5, x5+x-1

= x- x+ x+ x- x+ x- x2+ x -1 

= x3(x- x + 1)+ x2(x- x + 1)- (x- x + 1) 

= (x- x + 1)(x+ x- 1)

6, x5-x4-1

= x5 - x3 - x2 - x4 + x2 + x + x3 - x - 1 

= x2(x3 - x - 1) - x(x3 - x - 1) + (x3 - x - 1)

= (x2 - x + 1)(x3 - x - 1)

12 tháng 8 2018

1, x 3+ 6x 2+11x+6

= x 3 + 2x 2 + 4x 2 + 8x + 3x + 6

= x 2 ﴾x + 2﴿ + 4x﴾x + 2﴿ + 3﴾x + 2﴿

= ﴾x + 2﴿﴾x 2 + 4x + 3﴿

2, x 4+3x 3‐7x 2‐27x‐18

= x 4 + 3x 3 ‐ 9x 2 + 2x 2 ‐ 27x ‐18

= ﴾x 4 ‐ 9x 2 ﴿ + ﴾3x 3 ‐ 27x﴿ + ﴾2x 2 ‐ 18﴿

= x 2 ﴾x 2 ‐ 9﴿ + 3x﴾x 2 ‐ 9﴿ + 2﴾x 2 ‐ 9﴿

= ﴾x 2 ‐ 9﴿﴾x 2 + 3x + 2﴿

=﴾x + 3﴿﴾x ‐ 3﴿﴾x 2 + 3x + 2﴿

3, x 3‐8x 2+x+42

= x 3 ‐ 7x 2 ‐ x 2 + 7x ‐ 6x + 42

= ﴾x 3 ‐ 7x 2 ﴿ ‐ ﴾x 2 ‐ 7x﴿ ‐ ﴾6x ‐ 42﴿

= x 2 ﴾x ‐ 7﴿ ‐ x﴾x ‐ 7﴿ ‐ 6﴾x ‐ 7﴿

= ﴾x ‐ 7﴿﴾x 2 ‐ x ‐ 6﴿

4, x 4+5x 3‐7x 2‐41x‐30

= x 4 + x 3 + 4x 3 ‐ 4x 2 ‐ 11x 2 ‐ 11x ‐ 30x ‐ 30

= ﴾x 4 + x 3 ﴿ + ﴾4x 3 ‐ 4x 2 ﴿ ‐ ﴾11x 2 + 11x﴿ ‐ ﴾30x + 30﴿

= x 3 ﴾x + 1﴿ + 4x 2 ﴾x + 1﴿ ‐ 11x﴾x + 1﴿ ‐ 30﴾x + 1﴿

= ﴾x 3 + 4x 2 ‐ 11x ‐ 30﴿﴾x + 1﴿

5, x 5+x‐1

= x 5 ‐ x 4 + x 3 + x 4 ‐ x 3 + x 2 ‐ x 2+ x ‐1

= x 3 ﴾x 2 ‐ x + 1﴿+ x 2 ﴾x 2 ‐ x + 1﴿‐ ﴾x 2 ‐ x + 1﴿

= ﴾x 2 ‐ x + 1﴿﴾x 3 + x 2 ‐ 1﴿ 6, x 5‐x 4‐1

= x 5 ‐ x 3 ‐ x 2 ‐ x 4 + x 2 + x + x 3 ‐ x ‐ 1

= x 2 ﴾x 3 ‐ x ‐ 1﴿ ‐ x﴾x 3 ‐ x ‐ 1﴿ + ﴾x 3 ‐ x ‐ 1﴿

= ﴾x 2 ‐ x + 1﴿﴾x 3 ‐ x ‐ 1﴿ 

17 tháng 8 2016

1)x2-8x-9

= x^2 - 9x +x -9

= x(x+1) - 9 (x+1)

= (x-9) (x+1)

2)x2+3x-18

3)x3-5x2+4x

=x^3 - 4x^2 - x^2 + 4x 

= x^2 (x-1) - 4x(x-1)

= (x^2 - 4x) (x-1)

= x(x-4)(x-1)

4)x3-11x2+30x

5)x3-7x-6

6)x16-64

\(=\left(x^8\right)^2-8^2\)

\(=\left(x^8-8\right)\left(x^8+8\right)\)

7)x3-5x2+8x-4

8)x2-3x+2

= x^2 - 2x - x +2

= x(x-1) -2(x-1)

= (x-2)(x-1)

17 tháng 8 2016

1)   \(\left(x-9\right)\left(x+1\right)\)             2)   \(\left(x-3\right)\left(x+6\right)\)                                           3)   \(x\left(x-4\right)\left(x-1\right)\)

4)    \(x\left(x-6\right)\left(x-5\right)\)         5)\(\left(x-3\right)\left(x+1\right)\left(x+2\right)\)                               6)   ........

7)  \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\)          8)   \(\left(x-2\right)\left(x-1\right)\)

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

26 tháng 9 2018

dễ mak

26 tháng 9 2018

Bài 1 :

1) a2 - 4 + y ( a - 2 )

= ( a + 2 ) ( a - 2 ) + y ( a - 2 )

= ( a - 2 ) ( a + 2 + y )

2) ( x - 2 )2 - 9y2

= ( x - 2 - 3y ) ( x - 2 + 3y )

Bài 2 :

1) 3 ( x + 4 ) - 2x = 5

=> 3x + 12 - 2x = 5

=> x + 12 = 5

=> x = 5 - 12 = - 7

Vậy x = - 7

2) x ( x - 2 ) - x2 - 6 = 0

=> x2 - 2x - x2 - 6 = 0

=> - 2x - 6 = 0

=> 2x = - 6

=> x = \(-\frac{6}{2}=3\)

Vậy x = 3

3 ) x2 - 3x = 0

=> x ( x - 3 ) = 0

=> \(\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy \(x\in\left\{0;3\right\}\)

4) 5 - 3 ( x - 6 ) = 4

=> 5 - 3x + 18 = 4

=> 3x = 5 + 18 - 4

=> 3x = 19

=> x = \(\frac{19}{3}\)

Vậy \(x=\frac{19}{3}\)

4 tháng 9 2017

a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24 
= (x+2)(x+5)(x+3)(x+4)-24 
= (x^2+7x+10)(x^2+7x+12)-24 
Đặt x^2+7x+11 = a thay vào A ta được : 
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2) 
Thế a vào (2) ta được : 
A=(x^2+7x+11-5)(x^2+7x+11+5) 
= (x^2+7x+6)(x^2+7x+16) 

b)  = (x2+8x+7)(x2+8x+15)+15

        Đặt X=x2+8x+11

   f(x) = (X-4)(X+4)+15

         = X2-16+15

         = X2-12

         = (X-1)(X+1)

=> f(x)= (x2+8x+11-1)(x2+8x+11+1)

     f(x) = (x2+8x+10)(x2+8x+12)

Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:

     f(x) = (x2+8x+10)(x2+8x+12)

           = (x2+8x+10)[(x2+2x)+(6x+12)]

           = (x2+8x+10)[x(x+2)+6(x+2)]

           = (x+2)(x+6)(x2+8x+10)

   d)  2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)

Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1  nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)

Vậy 2x4 - 3x3 - 7x2 + 6x + 8  = (x-2)(x+1)(2x2-x-4)

4 tháng 9 2017

  a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

 \(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)

 \(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)

 \(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)

 \(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)

 \(=\left(x^2+x-1\right)^2-1=24\)

 \(=\left(x^2+x-1\right)^2=25\)

   xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

16 tháng 4 2017

1) (7x-4y)(15a-9b)

2) (x+1)(7x+6)

3) (x-1)(5x-6)

4) (x+2)(x-5)

5) (x+7)(x-6)

6) (2x-3)(3x+1)

7) (3x+7)(5x-2)

Tk mình nha!!!>.<

16 tháng 7 2018

1)  \(x^6-x^4-9x^3+9x^2\)

\(=x^2\left(x^4-x^2-9x+9\right)\)

\(=x^2\left[x^2\left(x^2-1\right)-9\left(x-1\right)\right]\)

\(=x^2\left(x-1\right)\left[x^2\left(x+1\right)-9\right]\)

\(=x^2\left(x-1\right)\left(x^3+x^2-9\right)\)

2)   \(x^4-4x^3+8x^2-16x+16\)

\(=x^2\left(x^2+4\right)-4x\left(x^2+4\right)+4\left(x^2+4\right)\)

\(=\left(x^2+4\right)\left(x-2\right)^2\)

18 tháng 7 2018

3) \(x^4-25x^2+20x-4=x^4+5x^3-2x^2-5x^3-25x^2+10x+2x^2+10x-4\)

\(=x^2\left(x^2+5x-2\right)-5x\left(x^2+5x-2\right)+2\left(x^2+5x-2\right)\)

\(=\left(x^2+5x-2\right)\left(x^2-5x+2\right)\)

4) \(5x\left(x-2y\right)+2\left(2y-x\right)^2\)\(=5x\left(x-2y\right)+2\left(x-2y\right)^2=\left(x-2y\right)\left(5x+2x-4y\right)=\left(x-2y\right)\left(7x-4y\right)\)

5) \(x^2\left(x^2-6\right)-x^2+9=x^4-7x^2+9\)

\(=x^4+x^3-3x^2-x^3-x^2+3x-3x^2-3x+9\)

\(=x^2\left(x^2+x-3\right)-x\left(x^2+x-3\right)-3\left(x^2+x-3\right)\)

\(=\left(x^2+x-3\right)\left(x^2-x-3\right)\)

6) \(7x\left(y-4\right)^2-\left(4-y\right)^3=7x\left(y-4\right)^2+\left(y-4\right)^3=\left(y-4\right)^2\left(7x+y-4\right)\)

7) \(x^3+2x^2-6x-27=x^3-3x^2+5x^2-15x+9x-27\)

\(=x^2\left(x-3\right)+5x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2+5x+9\right)\)

2 tháng 10 2017

bạn hỏi từng câu 1 lần thôi cũng đc hỏi 1 lần 17 câu thì thánh nào vô kiên nhẫn trả lời hết đc ^^

2 tháng 10 2017

hoa mắt quá