\(x^3-6x^2+11x+6\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

\(=6x^2-2x-\left(9x-3\right)\)

\(=2x\left(3x-1\right)-3\left(3x-1\right)\)

\(=\left(2x-3\right)\left(3x-1\right)\)

25 tháng 9 2017

6x2 - 11x + 3

= 2x(3x - 1) - 3(3x - 1)

= (3x - 1)(2x - 3)

11 tháng 7 2018

\(\left(x^2+6x\right)\left(x^2+14x+40\right)+128\)

\(=\left(x^2+6x\right)\left(x^2+14x+40\right)\)

\(=x^4+20x^3+124x^2+240x\)

\(=x^4+20x^3+124x^2+240x+128\)

11 tháng 7 2018

\(\left(x^2+6x\right)\left(x^2+14x+40\right)+128\)

\(=x^4+14x^3+40x^2+6x^3+84x^2+240x+128\)

\(=x^4+20x^3+124x^2+240x+128\)

mk chỉ biết đến đây thôi

\(B=x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)

\(=\left(x^2+3x-1\right)^2\)

31 tháng 1 2019

\(6x^4-11x^2+3=6x^4-9x^2-2x^2+3\)

\(=3x^2\left(2x^2-3\right)-\left(2x^2-3\right)=\left(2x^2-3\right)\left(3x^2-1\right)\)

10 tháng 12 2019

a) x^3 +5x^2+6x

= x^3+2x^2+3x^2+6x

=x*(x+3)*(x+2)

b) x^2-6x+8

= x^2-2x-4x+8

=(x-2)*(x-4)

c)2x^2+98+28x-8y^2

=2(x^2+14x+49-4y^2)

=2*[(x+7)^2-4y^2]

2*(x-7-2y)*(x-7+2y)

10 tháng 12 2019

a) x2 + 2x+ 3x2 + 6x

= x( x+2 ) + 3( x+2 )

=(x+3)(x+2)

b) x2 - 2x - 4x + 8

=x(x-2)-4(x-2)

=(x-4)(x-2)

c) 

11 tháng 9 2017

( x + 2 ) ( x + 3 ) ( x + 4 ) ( x + 5 ) - 24

= ( x2 + 7x + 10 ) ( x2 + 7x + 12 ) - 24

Đặt x2 + 7x + 10 = y

Ta có : 

y2 + 2y - 24 = ( y - 4 ) ( y + 6 ) = ( x2 + 7x + 6 ) ( x2 + 7x + 16 )

                    = ( x + 1 ) ( x + 6 ) ( x2 + 7x + 16 )

11 tháng 9 2017

Đặt x2+7x+10=t

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=t\left(t+2\right)-24=t^2+2t-24\)

\(=\left(t^2+2t+1\right)-25=\left(t+1\right)^2-5^2=\left(t-4\right)\left(t+6\right)\)=(x2+7x+6)(x2+7x+16)

=(x2+x+6x+6)(x2+7x+16)=[x(x+1)+6(x+1)](x2+7x+16)=(x+1)(x+6)(x2+7x+16)

NV
7 tháng 3 2019

Bài này ko thể phân tích theo kiểu lớp 8 được (chưa học căn thức)

\(2x^2-6x+1=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{3\sqrt{2}}{2}+\left(\frac{3\sqrt{2}}{2}\right)^2-\frac{7}{2}\)

\(=\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}\right)^2-\left(\frac{\sqrt{14}}{2}\right)^2\)

\(=\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}+\frac{\sqrt{14}}{2}\right)\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}-\frac{\sqrt{14}}{2}\right)\)

\(=\left(\sqrt{2}x+\frac{\sqrt{14}-3\sqrt{2}}{2}\right)\left(\sqrt{2}x-\frac{\sqrt{14}+3\sqrt{2}}{2}\right)\)

7 tháng 3 2019

\(2x^2-6x+1=2\left(x^2-3x+\frac{9}{4}-\frac{7}{4}\right)=2\left[\left(x-\frac{3}{2}\right)^2-\left(\frac{\sqrt{7}}{2}\right)^2\right]=2\left(x-\frac{3}{2}-\frac{\sqrt{7}}{2}\right)\left(x-\frac{3}{2}+\frac{\sqrt{7}}{2}\right)\)

\(=2\left(x-\frac{3+\sqrt{7}}{2}\right)\left(x-\frac{3-\sqrt{7}}{2}\right)\)

câu 1:

x3-1+3x2-3x =(x-1)(x^2+x+1)+3x(x-1)=(x-1)(x^2+x+1+3x)=(x-1)(x^2+4x=1)

6 tháng 1 2019

Câu 2 :

a) \(\left(x^4-2x^3+2x-1\right):\left(x^2-1\right)\)

\(=\left(x^4-x^2-2x^3+2x+x^2-1\right):\left(x^2-1\right)\)

\(=\left[x^2\left(x^2-1\right)-2x\left(x^2-1\right)+\left(x^2-1\right)\right]:\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-2x+1\right):\left(x^2-1\right)\)

\(=x^2-2x+1\)

b) \(\left(x^6-2x^5+2x^4+6x^3-4x^2\right):6x^2\)

\(=\frac{1}{6}x^4-\frac{1}{3}x^3+\frac{1}{3}x^2+x-\frac{2}{3}\)

Câu 3 :

Sửa đề :

\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)