Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(=3y^2-6y-2x+1\)
b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
c/ \(=\left(2-x\right)^3\)
d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)
\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)
\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)
e/ \(=xy-x^2+2x-y^2+xy-2y\)
\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)
a) =(2x+3y-1)2
b)=-(x-1)3
c)=-(x3-6x2+12x-8)=-(x-2)3
d)x3 + 2x2y + xy2 – 9x
= x(x2 + 2xy + y2 -9)
= x[(x2 + 2xy + y2) - 32]
= x[(x + y)2 - 32]
= x (x + y – 3)(x + y + 3)
e) 2x-2y-x2+2xy-y2=2(x-y)-(x-y)2=(x-y)(2-x+y)
tìm số tự nhiên nhỏ nhất biết rằng khi chia cho 23 dư 21 khi chia cho 17 dư 16
a. \(x^4+3x^3-9x-9=x^3\left(x+1\right)-9\left(x+1\right)\)\(=\left(x+1\right)\left(x^3-9\right)\)
1/ \(\left(9x^2-25\right)-\left(6x-10\right)=0\)
\(\Leftrightarrow9x^2-6x-35=0\)
\(\Leftrightarrow\left(2x-1\right)^2-36=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+6\right)=0\)
2/ \(\left(3x+5\right)^2-4x^2=0\)
\(\Leftrightarrow\left(x+5\right)\left(5x+5\right)=0\)
3/ \(25x^2-\left(4x-3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left(9x-3\right)=0\)
1) ( 9x2 - 25 ) - ( 6x - 10 ) = 0
\(\Leftrightarrow\) [ ( 3x)2 - 52 ] - 2.( 3x + 5 ) = 0
\(\Leftrightarrow\)( 3x - 5 ).( 3x + 5 ) - 2.( 3x - 5 ) = 0
\(\Leftrightarrow\) ( 3x + 5 ).( 3x + 5 - 2 ) = 0
\(\Leftrightarrow\)( 3x + 5 ).( 3x + 3 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+5=0\\3x+3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-5\\3x=-3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{-5}{3}\\x=-1\end{cases}}\)
Vậy x = \(\frac{-5}{3}\) , x = -1
2) ( 3x + 5 )2 - 4x2 = 0
\(\Leftrightarrow\) ( 3x + 5 - 2x ).( 3x + 5 + 2x ) = 0
\(\Leftrightarrow\)( x + 5 ).( 5x + 5 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+5=0\\5x+5=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-5\\x=-1\end{cases}}\)
Vậy x = -5 , x = -1
3) 25x2 - ( 4x - 3 )2 = 0
\(\Leftrightarrow\)( 5x )2 - ( 4x - 3 )2 = 0
\(\Leftrightarrow\) ( 5x - 4x + 3 ).(5x + 4x - 3 ) = 0
\(\Leftrightarrow\)( x + 3 ).( 9x - 3 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+3=0\\9x-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\9x=3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=\frac{1}{3}\end{cases}}\)
Vậy x = 3 , x = \(\frac{1}{3}\)
1) \(\left(3x+7\right)^2-\left(2x-3\right)^2=0\)
\(\Leftrightarrow\left(3x+7-2x+3\right)\left(3x+7+2x-3\right)=0\)
\(\Leftrightarrow\left(x+10\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+10=0\\5x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-10\\x=\frac{-4}{5}\end{cases}}\)
Vạy ...
phần 2 tương tự áp dụng \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\((4x-1)^2-(5-3x)^2=0\)
\(\Leftrightarrow(4x-1-5-3x)(4x+1+5-3x)=0\)
\(\Leftrightarrow(x-6)(x+6)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
Vậy : ...
\(a,x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right).\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right).\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(b,9x^2+y^2+6xy=\left(3x\right)^2+2.3x.y+y^2=\left(3x+y\right)^2\)
\(c,6x-9-x^2=-\left(x^2-6x+9\right)=-\left(x^2-2.x.3+3^2\right)=-\left(x-3\right)^2\)
bn chép lại đề nha
a/ \(=a^3+1-a^2x-ax\)
\(=\left(a+1\right)\left(a^2-a+1\right)-ax\left(a+1\right)\)
\(=\left(a+1\right)\left(a^2-a+1-ax\right)\)
b/ bn có chép sai đề không? mình sửa lại dấu "-" rồi nha \(-3x^2y\)
\(=12y+36-9x^2-3x^2y=12\left(y+3\right)-3x^2\left(y+3\right)\)
\(=3\left(y+3\right)\left(4-x^2\right)=3\left(y+3\right)\left(2-x\right)\left(2+x\right)\)
= (3x + 1 - x - 1)(3x + 1 + x + 1)
= 2x(4x + 2)
Em áp dụng hđt số 3 trong sgk nhé.
a)x3+3x2+3x+1
=x3+3x2*1+3x*12+13
=(x+1)3
b)(x+y)2-9x2
=y2+2xy+x2-9x2
=y2-2xy+4xy-8x2
=y(y-2x)+4x(y-2x)
=(y-2x)(y+4x)