Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
ta có a^4 + a^2 + 1 = a ^ 4 + 2a^2 + 1 - a^2 = (a^2+1)^2 - a^2 = (a^2- a + 1)(a^2 + a + 1)
\(a^4+a^2+1\)
\(=a^4+2a^2+1-a^2\)
\(=\left(a^2+1\right)^2-a^2\)
\(=\left(a^2+1-a\right)\left(a^2+a+1\right)\)
\(x^3+x^2+4\)
\(=x^3+2x^2-x^2+4\)
\(=x^2\left(x+2\right)-\left(x^2-4\right)\)
\(=x^2\left(x+2\right)-\left(x+2\right)\left(x-2\right)\)
\(=\left(x+2\right)\left(x^2-x+2\right)\)
x3-2x-4
=x3-4x+2x-4
=x(x2-4)+2(x-2)
=x(x-2)(x+2)+2(x-2)
=(x^2+2x+2)(x-2)
\(x^2-y^2+4x+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
\(4x^2-y^2+8\left(y-2\right)\)
\(=4x^2-\left(y^2-8y+16\right)\)
\(=4x^2-\left(y-4\right)^2\)
\(=\left(2x+y-4\right)\left(2x-y+4\right)\)
\(a^6+a^4+a^2b^2+b^4-b^6\)
\(=\left(a^6-b^6\right)+\left(a^4+a^2b^2+b^4\right)\)
\(=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^4+a^2b^2+b^4\right)\)
\(=\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2+1\right)\)
\(=\left[a^4+2a^2b^2+b^4-a^2b^2\right]\left(a^2-b^2+1\right)\)
\(=\left[\left(a^2+b^2\right)^2-\left(ab\right)^2\right]\left(a^2-b^2+1\right)\)
\(=\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\left(a^2-b^2+1\right)\)
Chúc bạn học tốt.
\(a^4+a^3+a^2+a\)
\(=a^3\left(a+1\right)+a\left(a+1\right)\)
\(=\left(a+1\right)\left(a^3+a\right)\)
nha !!!
Trả lời:
\(a^4+a^3+a^2+a\)
\(=\left(a^4+a^3\right)+\left(a^2+a\right)\)
\(=a^3\left(a+1\right)+a\left(a+1\right)\)
\(=a\left(a+1\right)\left(a^2+1\right)\)