Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề sai r nhé bạn, phải là 4x^4 - 32x^2 +1 mới đúng:
4x^4 - 32x^2 +1 = 4x^4 + 4x^2 +1 - 36x^2 = (2x^2 + 1)^2 - 36x^2 = (2x^2 - 6x + 1)(2x^2 + 6x + 1)
x^4 + x^2 + 1
= x^4 + 2x^2 + 1 - x^2
= ( x^2 + 1)^2 - x^2
= ( x^2 - x + 1 )( x^2 + x + 1)
\(4x^2-4y^2-4y-1\)
\(\Leftrightarrow4x^2-\left(2y+1\right)^2\)
\(\Leftrightarrow\left(2x-2y-1\right)\left(2x+2y+1\right)\)
P/s tham khảo nha
\(=4x^2-\left(4y^2+4y+1\right)\)
\(=4x^2-\left(4y^2+4y+1^2\right)\)
\(=\left(2x\right)^2-\left(2y+1\right)^2\)
\(=\left(2x-2y-1\right)\left(2x+2y+1\right)\)
x4 -2x2 +1 =x2.x2 - x2-x2 +1= - x2(1- x2) + (1 - x2)=(1-x2).(1-x2)=(1-x2)2
x4+x2+1
=x4-x+x2+x+1
=x(x3-1)+(x2+x+1)
=x(x-1)(x2+x+1)+(x2+x+1)
=(x2-x)(x2+x+1)+(x2+x+1)
=(x2+x+1)(x2-x+1)
\(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)
\(=\left(x+1\right)^4+x^2\cdot\left(x+1\right)^2+2x\left(x+1\right)+1\)
\(=\left(x+1\right)^2\cdot\left[\left(x+1\right)^2+x^2\right]+2x^2+2x+1\)
\(=\left(2x^2+2x+1\right)\left(x^2+2x+1+1\right)\)
\(=\left(2x^2+2x+1\right)\left(x^2+2x+2\right)\)
x3-3x2-3x+1=x3+1-3x2-3x
=(x+1)(x2-x+1)-3x(x+1)
=(x+1)(x2-x+1-3x)
=(x+1)(x2-4x+1)