Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)
\(b,27-8y^3=\left(3-2y\right)\left(9+6y+4y^2\right)\)
\(c,y^6+1=\left(y^2\right)^3+1=\left(y^2+1\right)\left(y^4-y^2+1\right)\)
\(d,64x^3-\dfrac{1}{8}y^3=\left(4x-\dfrac{1}{2}y\right)\left(16x^2+2xy+\dfrac{1}{4}y^2\right)\)
\(e,125x^6-27y^9=\left(5x^2\right)^3-\left(3y^3\right)^3=\left(5x^2-3y^3\right)\left(25x^4+15x^2y^3+9y^9\right)\)
\(g,16x^2\left(4x-y\right)-8y^2\left(x+y\right)+xy\left(16+8y\right)\)
\(=8\left[2x^2\left(4x-y\right)-y^2\left(x+y\right)\right]+8xy\left(2+y\right)\)
\(=8\left(8x^3-2x^2y-xy^2-y^3+2xy+xy^2\right)\)
\(f,-\dfrac{x^6}{125}-\dfrac{y^3}{64}=-\left[\left(\dfrac{x^2}{5}\right)^3+\dfrac{y^3}{4^3}\right]=-\left(\dfrac{x^2}{5}+\dfrac{y}{4}\right)\left(\dfrac{x^4}{25}-\dfrac{x^2y}{20}+\dfrac{y^2}{16}\right)\)
a, \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
b, \(1-9x+27x^2-27x^3=-\left(3x-1\right)^3\)
Mình có làm ở câu dưới rồi . Bạn tham khảo link :
https://olm.vn/hoi-dap/detail/231817932107.html
Bài 14:Tìm x
a,\(x-3=\left(3-x\right)^2\)
\(\Rightarrow\left(x-3\right)-\left(3-x\right)^2=0\)
\(\Rightarrow\left(x-3\right)+\left(x-3\right)^2=0\)
\(\Rightarrow\left(x-3\right)\left(1+x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
b,\(\left(2x-5\right)-\left(5+2x\right)^2=0\)
\(\Rightarrow\left(2x-5\right)+\left(2x-5\right)^2=0\)
\(\Rightarrow\left(2x-5\right)\left(1+2x-5\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=5\\2x=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=2\end{matrix}\right.\)
a) (x+2) \(\left(x^2-2x+4\right)\)
b) (3 - 2y) \(\left(9+6y+4y^2\right)\)
d) (4x - y) \(\left(16x^2+4xy+y^2\right)\)
bạn giải chi tiết hộ mình với nha.mk sắp phải nộp bài r. huhuhuhu
a) \(x^3+6x^2+12x+8\)
\(=\left(x+2\right)^3\)
b) \(x^3-3x^2+3x-1\)
\(=\left(x-1\right)^3\)
c) \(1-9x+27x^2-27x^3\)
\(=-\left(27x^3-27x^2+9x-1\right)\)
\(=-\left(3x-1\right)^3\)
a) \(\dfrac{1}{8}x^3y^3-27=\left(\dfrac{1}{2}xy\right)^3-3^3=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{1}{4}x^2y^2+\dfrac{1}{6}xy+9\right)\)
b)\(\dfrac{8}{125}x^3+27y^3=\left(\dfrac{2}{5}x\right)^3+\left(3y\right)^3=\left(\dfrac{2}{5}x+3y\right)\left(\dfrac{4}{25}x^2-\dfrac{6}{5}xy+9y^2\right)\)
c) \(0.008x^6-27y^3=\left(0.2x^2\right)^3-\left(3y\right)^3=\left(0.2x^2-3y\right)\left(0.04x^4+\dfrac{3}{5}x^2y+9y^2\right)\)
d)\(\left(2x+y\right)^3-\left(x-y\right)^3=\left(2x+y-x+y\right)[\left(2x+y\right)^2+\left(2x+y\right)\left(x-y\right)+\left(x-y\right)^2]\\ =\left(x+2y\right)\left(4x^2+4xy+y^2+2x^2-2xy+xy-y^2+x^2-2xy+y^2\right)\\ =\left(x+2y\right)\left(6x^2+xy+y^2\right)\)
Bài 1:
a) \(\dfrac{1}{8}x^3y^3-27\)
\(=\left(\dfrac{1}{2}xy\right)^3-3^3\)
\(=\left(\dfrac{1}{2}xy-3\right)\left[\left(\dfrac{1}{2}xy\right)^2+\dfrac{1}{2}xy.3+3^2\right]\)
\(=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{1}{4}xy+\dfrac{3}{2}xy+9\right)\)
\(=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{7}{4}xy+9\right)\)
b) \(\dfrac{8}{125}x^3+\dfrac{1}{8}y^3\)
\(=\left(\dfrac{2}{5}x\right)^3+\left(\dfrac{1}{2}y\right)^3\)
\(=\left(\dfrac{2}{5}x+\dfrac{1}{2}y\right)\left[\left(\dfrac{2}{5}x\right)^2-\dfrac{2}{5}x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\right]\)
\(=\left(\dfrac{2}{5}x+\dfrac{1}{2}y\right)\left(\dfrac{4}{25}x-\dfrac{1}{5}xy+\dfrac{1}{4}y\right)\)
c) \(0.008x^6-27y^3\)
\(=\left(\dfrac{1}{5}x^2\right)^3-\left(3y\right)^3\)
\(=\left(\dfrac{1}{5}x^2-3y\right)\left[\left(\dfrac{1}{5}x^2\right)^2+\dfrac{1}{5}x^2.3y+\left(3y\right)^2\right]\)
\(=\left(\dfrac{1}{5}x^2-3y\right)\left(\dfrac{1}{25}x^4+\dfrac{3}{5}x^2y+9y^2\right)\)
d) \(\left(2x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(2x+y\right)-\left(x-y\right)\right]\left[\left(2x+y\right)^2+\left(2x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(2x+y-x+y\right)\left(4x^2+4xy+y^2+2x^3-2xy+xy-y^2+x^2-2xy+y^2\right)\)
\(=\left(x-2y\right)\left(4x^2+2x^3+xy\right)\)
\(x^3+\frac{1}{x^3}=x^3+\left(\frac{1}{x}\right)^3=\left(x+\frac{1}{x}\right)\left(x^2-x+\frac{1}{x^2}\right)\)( x khác 0 )
\(-x^3+9x^2-27x+27=-\left(x^3-9x^2+27x-27\right)=-\left(x-3\right)^3\)
\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)
a) 5x - 15y = 5(x - 3y)
b) \(\dfrac{3}{5}\)x2 + 5x4 - x2 - y
= \(\dfrac{3}{5}\)x2 + 5x2.x2 - x2 - y
= x2(\(\dfrac{3}{5}\) + 5x2 -1) - y
c) 14x2y2 - 21xy2 + 28x2y
= 7xy.xy - 7xy.3y + 7xy.4x
= 7xy(xy - 3y + 4x)
= 7xy[(xy - 3y) + 4x]
= 7xy[y(x - 3) +4x]
d) \(\dfrac{2}{7}x\)(3y - 1) - \(\dfrac{2}{7}y\)(3y - 1)
= (3y - 1).(\(\dfrac{2}{7}x\) - \(\dfrac{2}{7}y\) )
= (3y - 1).[\(\dfrac{2}{7}\)(x - y)]
e) x3 - 3x2 + 3x - 1
= x2.x - 3x.x + 3.x - 1
= x(x2-3x+3) - 1
g) 27x3 + \(\dfrac{1}{8}\)
= (3x)3 + \(\left(\dfrac{1}{2}\right)^3\)
= (3x + \(\dfrac{1}{2}\)).(9x2 - \(\dfrac{3}{2}\)x + \(\dfrac{1}{4}\))
h) (x+y)3 - (x-y)3
= 2(3x2y) + 2y3
f) (x+y)2 - 4x2
= -3x2 + y(2x + y)
Bài 8:
b. 1+8x6y3 = 13+23(x2)3y3 = 13+(2x2y)3
= (1+2x2y)(1-2x2y+4x4y2)
e. 27x3+\(\dfrac{y^3}{8}\)\(=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)
= (3x+\(\dfrac{y}{2}\))(9x2-\(\dfrac{3xy}{2}\)+\(\dfrac{y^2}{4}\))
Bài 9:
c. 1- 9x +27x2 -27x3 = 13-3.12.3x+3.(3x)2-(3x)3
= (1-3x)3
d. x3+\(\dfrac{3}{2}x^2\)+\(\dfrac{3}{4}x+\dfrac{1}{8}\) = x3+\(3x^2.\dfrac{1}{2}\)+\(3x.\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3\)
= (x+\(\dfrac{1}{2}\))3
f. x2 - 2xy +y2 -4m2 +4m.n - n2 = (x2 - 2xy +y2)-((2m)2 -2.2m.n + n2)
= (x-y)2-(2m-n)2 = (x-y-2m+n)(x-y+2m-n)
b)3x^2-18x+27=3x^2-9x-9x+27=3x*(x-3)-9*(x-3)=(x-3)*(3x-9)=(x-3)*3*(x-3)=3*(x-3)^2
c)x^3-4x^2-12x+27=(x+3)*(x^2-3x+9-4)=(x+3)*(x^2-3x+5)
d)27x^3-1/27=(3x-1/3)*(9x^2-x+1/9) (hang dt)
con a) voi e) mk chiu
\(a,=\left(3x+2y\right)^3\\ b,=\left(4-x\right)^3\\ c,=\left(\dfrac{1}{2}x-3y\right)^3\)