Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
Bài làm
c ) Ta có :
\(\frac{2017}{2018}< 1\)
\(\frac{12}{11}>1\)
\(\Rightarrow\frac{2017}{2018}< \frac{12}{11}\)
trả lời
a, quy đồng rồi so sánh
b,quy đồng rồi so sánh
c,phân số nào có tử nhỏ hơn mẫu khi so sành với phân số có tử lớn hơn mẫu đều bé hơn
d,quy đồng rồi so sánh
chắc vậy chúc bn học tốt
\(\frac{2017}{2018}\)và \(\frac{2019}{2020}\)
Ta có : \(1-\frac{2017}{2018}=\frac{1}{2018};1-\frac{2019}{2020}=\frac{1}{2020}\)
Vì \(\frac{1}{2018}>\frac{1}{2020}\)nên \(\frac{2017}{2018}< \frac{2019}{2020}\)
Cái này là so sánh bằng phần bù của đơn vị nha bn !
Học tốt #
\(\frac{2017}{2018};\frac{2018}{2019};\frac{2019}{2020}\)
\(\Rightarrow\frac{2017}{2018}< \frac{2019}{2020}\)
Ta có:
\(\frac{63}{64}=\frac{63.2018}{64.2018}=\frac{127134}{129152}\)
\(\frac{2017}{2018}=\frac{2017.64}{2018.64}=\frac{129088}{129152}\)
Vậy \(\frac{63}{64}< \frac{2017}{2018}\)
Ta có 1 - 63/64=1/64
1 - 2017/2018=1/2018
(Ta so sánh phần tử số)
Vì 1/64>1/2018 nên 63/64>2017/2018
Ta có :\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2016}\)= \(\frac{2016}{2016}=1\)
mà : 1 < 3
vậy:\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2016}< 3\)
Giải: Ta có:
\(\frac{2016}{2017}=\frac{2017}{2017}-\frac{1}{2017}=1-\frac{1}{2017}\)
\(\frac{2017}{2018}=\frac{2018}{2018}-\frac{1}{2018}=1-\frac{1}{2018}\)
\(\frac{2018}{2016}=\frac{2016}{2016}+\frac{2}{2016}=1+\frac{2}{2016}\)
\(\Rightarrow3+\frac{-1}{2017}+\frac{-1}{2018}+\frac{2}{2016}=3+\frac{2}{2016}>3\)
Ta có:
\(A=\frac{2017\cdot2018-1}{2017\cdot2018-2}\)
\(A=\frac{2017\cdot2018-2+1}{2017\cdot2018-2}\)
\(A=\frac{2017\cdot2018-2}{2017\cdot2018-2}+\frac{1}{2017\cdot2018-2}\)
\(A=1+\frac{1}{2017\cdot2018-2}\)
Ta có phân số trung gian là 1. Ta có:
\(A>1\) ; \(B< 1\)
\(\Rightarrow A>1>B\)
\(\Rightarrow A>B\)
Vậy A>B
Chúc em học tốt!
\(\Rightarrow\text{❤️✔✨♕✨✔️❤ }\Leftarrow\)
\(\text{Ta có :}\)
\(A=\frac{2017\cdot2018-1}{2017\cdot2018-2}=\frac{4070305}{4070304}=1\frac{1}{4070304}\)
\(B=\frac{2017}{2018}\)
\(\text{Vì : }1\frac{1}{4070304}>1\text{ mà }\frac{2017}{2018}< 1\text{ nên }1\frac{1}{4070304}>\frac{2017}{2018}\)
\(\Rightarrow A>B\)
\(\frac{18}{17}\)
là phân số có giá trị lớn nhất
Phân số lớn nhất là : 18/17