K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2015

b)Tứ giác AMCN có I là trung điểm của 2 đường chéo AC và NM

=>AMCN là hbh

Mặt khác : Tam giác ABC cân tại A có trung tuyến AM nên AM vừa là đường trung tuyến , đường trung trực , vừa là đường cao ứng với cạnh đáy BC

=>AM vuông góc với BC

=>AMCN là hcn    (đpcm)

c)Vì AKMI là h thoi (cmt)

=>AK=NI và AK//NI

=>AKNI là hbh  =>AN//KI và AN=KI   (1)

Mặt khác :KI là đường trung bình của tam giác ABC(cmt)

=>KI =1/2BC và KI//BC

=>KI=BM và KI//BM     (2)

Từ (1)(2) =>AN=BM và AN//BM  =>ANBM là hbh

Nên 2 đường chéo AM và BN sẽ cắt nhau tại trung điểm mỗi đường

Mà E là trung điểm của AM (gt)

=>Elaf trung điểm của BN   (đpcm)

c) GỢI Ý :

Để AMCN là h vuông thì tam giác ABC vuông cân tại A

                                   (phần chứng minh thì bạn tự làm naaaaa !!! )
 

19 tháng 11 2018

sai đầu bài rồi bạn ơi

21 tháng 11 2018

đúng mà

21 tháng 3 2020

\(\text{GIẢI :}\)

A B C M D E

a) Xét \(\diamond\text{ADME}\)\(DM\text{ }//\text{ }AB\), \(EM\text{ }//\text{ }AC\) \(\Rightarrow\text{ }\diamond\text{ADME}\) là hình bình hành.

b) Để hình bình hành ADME là hình thoi \(\Leftrightarrow\text{ }AM\) là tia phân giác của góc A.

Vậy M là giao điểm của tia phân giác góc A và cạnh BC thì ADME là hình thoi.

c) Để hình bình hành ADME là hình chữ nhật \(\Leftrightarrow\angle\text{A}=90^0\text{ }\Leftrightarrow\text{ }\bigtriangleup\text{ABC}\) vuông tại A.

17 tháng 8 2016

nhìn khó phết

22 tháng 10 2019

Bài làm :

A B C D E F

a/ Xét \(\diamond EBFD\), có :

  • \(EB//DF\) (vì \(AB//CD\))
  • \(EB=\frac{1}{2}AB=\frac{1}{2}DC=FC\)

\(\Rightarrow \diamond EBFD\) là hình bình hành \(\Rightarrow DE=BF,\:EB//EF\)(1)

b/ Xét \(\diamond AECF\), có :

  • \(AE//FC\) (vì \(AB//CD\))
  • \(AE=\frac{1}{2}AB=\frac{1}{2}DC=FC\)

\(\Rightarrow\:\diamond AECF\) là hình bình hành \(\Rightarrow AF=EC, AF//EC\) (2)

Từ (1) và (2) \(\Rightarrow \diamond EMFN\) là hình bình hành.