Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Tứ giác AMCN có I là trung điểm của 2 đường chéo AC và NM
=>AMCN là hbh
Mặt khác : Tam giác ABC cân tại A có trung tuyến AM nên AM vừa là đường trung tuyến , đường trung trực , vừa là đường cao ứng với cạnh đáy BC
=>AM vuông góc với BC
=>AMCN là hcn (đpcm)
c)Vì AKMI là h thoi (cmt)
=>AK=NI và AK//NI
=>AKNI là hbh =>AN//KI và AN=KI (1)
Mặt khác :KI là đường trung bình của tam giác ABC(cmt)
=>KI =1/2BC và KI//BC
=>KI=BM và KI//BM (2)
Từ (1)(2) =>AN=BM và AN//BM =>ANBM là hbh
Nên 2 đường chéo AM và BN sẽ cắt nhau tại trung điểm mỗi đường
Mà E là trung điểm của AM (gt)
=>Elaf trung điểm của BN (đpcm)
c) GỢI Ý :
Để AMCN là h vuông thì tam giác ABC vuông cân tại A
(phần chứng minh thì bạn tự làm naaaaa !!! )
\(\text{GIẢI :}\)
A B C M D E
a) Xét \(\diamond\text{ADME}\) có \(DM\text{ }//\text{ }AB\), \(EM\text{ }//\text{ }AC\) \(\Rightarrow\text{ }\diamond\text{ADME}\) là hình bình hành.
b) Để hình bình hành ADME là hình thoi \(\Leftrightarrow\text{ }AM\) là tia phân giác của góc A.
Vậy M là giao điểm của tia phân giác góc A và cạnh BC thì ADME là hình thoi.
c) Để hình bình hành ADME là hình chữ nhật \(\Leftrightarrow\angle\text{A}=90^0\text{ }\Leftrightarrow\text{ }\bigtriangleup\text{ABC}\) vuông tại A.
Bài làm :
A B C D E F
a/ Xét \(\diamond EBFD\), có :
- \(EB//DF\) (vì \(AB//CD\))
- \(EB=\frac{1}{2}AB=\frac{1}{2}DC=FC\)
\(\Rightarrow \diamond EBFD\) là hình bình hành \(\Rightarrow DE=BF,\:EB//EF\)(1)
b/ Xét \(\diamond AECF\), có :
- \(AE//FC\) (vì \(AB//CD\))
- \(AE=\frac{1}{2}AB=\frac{1}{2}DC=FC\)
\(\Rightarrow\:\diamond AECF\) là hình bình hành \(\Rightarrow AF=EC, AF//EC\) (2)
Từ (1) và (2) \(\Rightarrow \diamond EMFN\) là hình bình hành.