Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\left(x+1\right)\left(x^2+1\right)=y^3+1\\\left(y+1\right)\left(y^2+1\right)=z^3+1\\\left(z+1\right)\left(z^2+1\right)=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^3+x^2+x=y^3\left(1\right)\\y^3+y^2+y=z^3\\z^3+z^2+z=x^3\end{matrix}\right.\)
Giả sử \(x>y\Rightarrow x^3+x^2+x>y^3+y^2+y\)
\(\Rightarrow y^3>z^3\Leftrightarrow y>z\left(2\right)\)
\(\Rightarrow y^3+y^2+y>z^3+z^2+z\Rightarrow z>x\left(3\right)\)
Từ \(\left(2\right);\left(3\right)\Rightarrow y>x\) (Vô lí)
Giả sử \(x< y\Rightarrow x^3+x^2+x< y^3+y^2+y\)
\(\Rightarrow y^3< z^3\Leftrightarrow y< z\left(4\right)\)
\(\Rightarrow y^3+y^2+y< z^3+z^2+z\Rightarrow z< x\left(5\right)\)
Từ \(\left(4\right);\left(5\right)\Rightarrow y< x\) (Vô lí)
\(\Rightarrow x=y=z\)
\(\left(1\right)\Leftrightarrow x^3+x^2+x=x^3\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow x=y=z=0\) hoặc \(x=y=z=-1\)
Câu 1 :
Ta có :
\(\Delta=\left(m-1\right)^2-4.\left(2m-7\right)\)
\(=m^2-2m+1-8m+28\)
\(=m^2-10m+27>0\)
Do đó pt luôn có 2 nghiệm phân biệt
Điều kiện x\(\ge-2:y\ge0.\)
Đặt \(\sqrt{x+2}=u:\sqrt{y}=v\)
(1) \(\Leftrightarrow\left(u^2-v^2+1\right)u=v\)
\(\Leftrightarrow u\left(u+v\right)\left(u-v\right)+u-v\)
\(\Leftrightarrow\left(u-v\right)\left[u\left(u+v\right)+1\right]=0\)
\(\Leftrightarrow u=v\) hay \(\sqrt{x+2}=\sqrt{y}\) => y= x+2 Thay vào (2) ta có Nghiệm của hệ PT (x=1: y=3)
ĐK:\(x\in\left[0;2\right];y\ge-4\)
\(pt\left(1\right)\Leftrightarrow\left(x-y-2\right)\left(x^2+xy+y^2-x+y+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-y-2=0\\x^2+xy+y^2-x+y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x-2\\\left(2x+y-1\right)^2-3\left(x-1\right)\left(x+y\right)\ge0\end{matrix}\right.\)
Thay \(y=x-2\) vào \(pt\left(2\right)\):
\(4\sqrt{2-x}+2\sqrt{2\left(x-2\right)+8}=\sqrt{9x^2+16}\)
\(\Rightarrow x=\dfrac{4\sqrt{2}}{3}\Rightarrow y=\dfrac{4\sqrt{2}}{3}-2\)