K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

a) (3x2y).(5xy4)= 15x3y5

b) (-2xyz2).(x3y2z).(0,3xy)=-0,6x5y4z3

31 tháng 10 2019

\(a)x^2-5x+6\)

\(=x^2-2x-3x+6\)

\(=x\left(x-2\right)-3\left(x-2\right)\)

\(=\left(x-2\right)\left(x-3\right)\)

\(b)x^3-5x^2+8x-4\)

\(=x^3-x^2+x^2-5x^2+8x-4\)

\(=x^3-x^2-4x^2+4x+4x-4\)

\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)\)

\(=\left(x-1\right)\left(x-2\right)^2\)

\(c)x^2-5x-14\)

\(=x^2+2x-7x-14\)

\(=x\left(x+2\right)-7\left(x+2\right)\)

\(=\left(x+2\right)\left(x-7\right)\)

Bài 3

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+y+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)

a: \(P=-3x^4y^5\)

Hệ số là -3

Bậc là 9

b: Khi x=-1 và y=2 thì \(P=-3\cdot\left(-1\right)^4\cdot2^5=-3\cdot32=-96\)

5 tháng 7 2017

\(A=2\left(x+3\right)^2-5\)

\(\left(x+3\right)^2\ge0\Rightarrow2\left(x+3\right)^2\ge0\)

\(A_{MIN}\Rightarrow2\left(x+3\right)^2_{MIN}\)

\(2\left(x+3\right)^2_{MIN}=0\)

\(A_{MIN}=0-5=-5\)

\(B=x^4+3x^2+2\)

\(x^4\ge0;x^2\ge0\Rightarrow3x^2\ge0\)

\(B_{MIN}\Rightarrow x^4_{MIN};3x^2_{MIN}\)

\(x^4_{MIN}=0;3x^2_{MIN}=0\)

\(B_{MIM}=0+0+2=2\)

\(C=\left(x^4+5\right)^2\)

\(\left(x^4+5\right)^2\ge0\)

\(C_{MIN}\Rightarrow\left(x^4+5\right)^2_{MIN}\)

\(\left(x^4+5\right)^2_{MIN}=0\)

\(\Rightarrow C_{MIN}=0\)

\(D=\left(x-1\right)^2+\left(y+2\right)^2\)

\(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)

\(D_{MIN}\Rightarrow\left(x-1\right)^2_{MIN};\left(y+2\right)^2_{MIN}\)

\(\left(x-1\right)^2_{MIN}=0;\left(y+2\right)^2_{MIN}=0\)

\(D_{MIN}=0+0=0\)

5 tháng 7 2017

a/ Ta có: \(2\left(x+3\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+3\right)^2-5\ge-5\)

Dấu ''='' xảy ra \(\Leftrightarrow\left(x+3\right)^2=0\Rightarrow x=-3\)

Vậy \(A_{MIN}=-5\Leftrightarrow x=-3\)

b/ Có: \(\left\{{}\begin{matrix}x^4\ge0\\3x^2\ge0\end{matrix}\right.\)\(\forall x\)

\(\Rightarrow x^4+3x^2\ge0\Rightarrow x^4+3x^2+2\ge2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=0\)

Vậy \(B_{MIN}=2\Leftrightarrow x=0\)

c/ Ta có: \(x^4\ge0\forall x\Rightarrow x^4+5\ge5\)

\(\Rightarrow\left(x^4+5\right)^2\ge5^2=25\)

Dấu ''='' xảy ra \(\Leftrightarrow x=0\)

Vậy \(C_{MIN}=25\Leftrightarrow x=0\)

d/ Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\Rightarrow x=1\\\left(y+2\right)^2=0\Rightarrow y=-2\end{matrix}\right.\)

Vậy \(D_{MIN}=0\) khi \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

a, 2x+80= 3y

Xét x=0=> 3y=81=> y=4

Xét x>0 ta thấy 2x,80 là số chẵn => 3y là số chẵn (vô lí)

Vậy x=0,y=4

12 tháng 8 2019

a, 2x + 80 = 3y

Xét x khác 0

=> 2x Chẵn

=> 2x + 80 Chẵn

Mà 3y lẻ

=> 2x + 80 = 3y là khẳng định sai

Xét x = 0

=> 20 + 80 = 3y

<=> 1 + 80 = 3y

<=> 3y = 81

<=> y = 4

Vậy x = 0; y = 4