K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

Đáp án D

7 tháng 12 2022

làm chi tiết đi bạn giúp mik vs

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Theo bài ra ta có:

AB=8m => AO=OB=4m

AC=0,5m => OC=OA-AC=3,5m

=> Parabol đi qua điểm A(-4;0); B(4;0); C(-3,5; 2,93)

Do đó ta có các phương trình sau:

\(a.{( - 4)^2} + b( - 4) + c = 0 \Leftrightarrow 16a - 4b + c = 0\)

\(a{.4^2} + 4b + c = 0 \Leftrightarrow 16a + 4b + c = 0\)

\(a.{( - 3,5)^2} + b( - 3,5) + c = 2,93 \Leftrightarrow 12,25a - 3,5b + c = 2,93\)

Từ 3 phương trình trên, ta có: \(a = \frac{{ - 293}}{{375}};b = 0;c = \frac{{4688}}{{375}}\)

Tọa độ đỉnh là \(I\left( {0;\frac{{4688}}{{375}}} \right)\)

Vậy chiều cao của cổng parabol là \(\frac{{4688}}{{375}} \approx 12,5m\)

=> Kết quả của An tính ra không chính xác.

NV
5 tháng 1 2021

Không có hình vẽ bạn?

6 tháng 1 2021

Hình P Đi xuống á 

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Gắn hệ trục Oxy vào chiếc cổng, gọi chiều cao của cổng là ta vẽ lại parabol như dưới đây:

Phương trình parabol mô phỏng cổng có dạng \({y^2} = 2px\)

Theo giả thiết \(AB = 2{y_A} = 192 \Rightarrow {y_A} = 96,OC = h \Rightarrow M\left( {h - 2;95,5} \right),A\left( {h;96} \right)\)

Thay tọa độ các điểm \(M\left( {h - 2;95,5} \right),A\left( {h;96} \right)\) vào phương trình \({y^2} = 2px\) ta có:

\(\left\{ \begin{array}{l}95,{5^2} = 2p\left( {h - 2} \right)\\{96^2} = 2ph\end{array} \right. \Rightarrow \left\{ \begin{array}{l}p = \frac{{383}}{{16}}\\h \simeq 192,5\end{array} \right.\)

Vậy chiều cao của cổng gần bằng 192,5 m