K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Xét tam giác \(ABC\) ta có:

\(DE//BC\) và \(D,E\) cắt \(AB;AC\) tại \(D;E\).

Do đó, \(\Delta ADE\backsim\Delta ABC\) (định lí)

b) Vì \(\Delta ADE\backsim\Delta ABC\) nên \(\frac{{AD}}{{AB}} = \frac{{DE}}{{BC}}\) (cách cặp cạnh tương ứng có cùng tỉ lệ).

Thay số, \(\frac{{16}}{{30}} = \frac{{22}}{{BC}} \Rightarrow BC = \frac{{22.30}}{{16}} = 41,25\)

Vậy \(BC = 41,25m\).

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Vì \(\left\{ \begin{array}{l}JC \bot AE\\BH \bot AE\end{array} \right. \Rightarrow JC//BH\). Vì \(JC//BH \Rightarrow \widehat {HBA} = \widehat {JCA}\) (hai góc đồng vị)

hay \(\widehat {HBA} = \widehat {DCB}\)

Xét \(\Delta ABH\) và \(\Delta DCB\) có:

\(\widehat {HBA} = \widehat {DCB}\) (chứng minh trên)

\(\widehat {AHB} = \widehat {DBC} = 90^\circ \)

Do đó, \(\Delta ABH\backsim\Delta DCB\) (g.g)

b) Vì  (hai góc tương ứng) hay \(\widehat {EAB} = \widehat {CDB}\).

Xét \(\Delta AEB\) và \(\Delta DCB\) có:

\(\widehat {EAB} = \widehat {CDB}\) (chứng minh trên)

\(\widehat {ABE} = \widehat {DBC} = 90^\circ \)

Do đó, \(\Delta AEB\backsim\Delta DCB\) (g.g)

Suy ra, \(\frac{{BE}}{{BC}} = \frac{{BA}}{{BD}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Hay \(\frac{{BC}}{{BE}} = \frac{{BD}}{{BA}}\) (điều phải chứng minh).

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Vì tam giác \(\Delta MNP\backsim\Delta ABC\) nên \(\widehat B = \widehat N\) (hai góc tương ứng).

Vì \(MK\) là đường cao nên \(\widehat {MKN} = 90^\circ \);Vì \(AH\) là đường cao nên \(\widehat {AHB} = 90^\circ \)

Xét \(\Delta MNK\) và \(\Delta ABH\) có:

\(\widehat B = \widehat N\) (chứng minh trên)

\(\widehat {MKN} = \widehat {AHB} = 90^\circ \)

Do đó, \(\Delta MNK\backsim\Delta ABH\) (g.g)

Vì \(\Delta MNK\backsim\Delta ABH\) nên ta có: \(\frac{{MN}}{{AB}} = \frac{{NK}}{{BH}} = \frac{{MK}}{{AH}} = k \Rightarrow \frac{{MK}}{{AH}} = k\).

b) Vì \(\Delta MNP\backsim\Delta ABC\) nên \(\frac{{MN}}{{AB}} = \frac{{NP}}{{BC}} = \frac{{MP}}{{AC}} = k\)

\( \Rightarrow \frac{{NP}}{{BC}} = k \Leftrightarrow NP = kBC\)

Vì \(\frac{{MK}}{{AH}} = k \Rightarrow MK = kAH\)

 Diện tích tam giác \(MNP\) là:

\({S_1} = \frac{1}{2}.MK.NP\) (đvdt)

 Diện tích tam giác \(ABC\) là:

\({S_2} = \frac{1}{2}.AH.BC\) (đvdt)

Ta có: \(\frac{{{S_1}}}{{{S_2}}} = \frac{{\frac{1}{2}.MK.NP}}{{\frac{1}{2}.AH.BC}} = \frac{{kAH.kBC}}{{AH.BC}} = {k^2}\) (điều phải chứng minh)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

- Có EF // BC =>  \(\widehat {{\rm{AEF}}} = \widehat {AC{\rm{D}}}\) (2 góc đồng vị) (1)

- Có EF // BD (vì EF // BC) 

      DE // FB (vì MN // BC)

=> EFBD là hình bình hành

=> \(\widehat {EFB} = \widehat {E{\rm{D}}B}\)

mà \(\widehat {EFB} + \widehat {{\rm{AEF}}} = {180^o}\)

     \(\widehat {E{\rm{D}}B} + \widehat {E{\rm{D}}C} = {180^o}\)

=> \(\widehat {AF{\rm{E}}} = \widehat {E{\rm{D}}C}\) (2)

Từ (1) và (2) => ΔAEF ∽ ΔECD (g.g)

Có \(\frac{{AF}}{{E{\rm{D}}}} = \frac{2}{4} = \frac{1}{2}\)

=> Đồng dạng với tỉ số \(\frac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a)  Xét \(\Delta DEF\) và \(\Delta HDF\) có:

\(\widehat F\) chung

\(\widehat {EDF} = \widehat {DHF} = 90^\circ \)

Do đó, \(\Delta DEF\backsim\Delta HDF\) (g.g)

b) Vì \(\Delta DEF\backsim\Delta HDF\) nên \(\frac{{DF}}{{HF}} = \frac{{FE}}{{DF}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

\( \Rightarrow D{F^2} = FH.FE\).

c) Theo câu b ta có:

\(D{F^2} = FH.FE\)

Thay số, \(D{F^2} = 5,4.15 = 81 \Rightarrow DF = \sqrt {81}  = 9cm\)

Vậy \(DF = 9cm\).

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Xét tam giác \(ABD\) và tam giác \(ACB\) có:

\(\widehat {ABD} = \widehat {ACB}\) (giả thuyết)

\(\widehat A\) chung

Suy ra, \(\Delta ABD\backsim\Delta ACB\) (g.g)

b) Vì \(\Delta ABD\backsim\Delta ACB\)

Suy ra, \(\frac{{AB}}{{AC}} = \frac{{AD}}{{AB}}\) (các cặp cạnh tương ứng có cùng tỉ lệ).

Suy ra, \(A{B^2} = AC.AD = 9.4 = 36 \Rightarrow AB = \sqrt {36}  = 6\)

Vậy \(AB = 6cm.\)

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Tỉ số:

\(\frac{{DE}}{{AC}} = \frac{6}{8} = \frac{3}{4};\frac{{EF}}{{BC}} = \frac{{15}}{{20}} = \frac{3}{4}\).

Xét tam giác\(DEF\) và tam giác\(ABC\) có:

\(\frac{{DE}}{{AC}} = \frac{{EF}}{{BC}} = \frac{3}{4}\) (chứng minh trên)

Do đó, \(\Delta DEF\backsim\Delta ABC\).

Tỉ số:

\(\frac{{DE}}{{MN}} = \frac{6}{3} = 2;\frac{{EF}}{{NP}} = \frac{{15}}{6} = \frac{5}{2}\).

Vì \(\frac{{DE}}{{MN}} \ne \frac{{EF}}{{NP}}\) nên hai tam giác \(DEF\) và \(MNP\) không đồng dạng với nhau.

Tỉ số:

\(\frac{{DE}}{{RS}} = \frac{6}{4} = \frac{3}{2};\frac{{EF}}{{ST}} = \frac{{15}}{{12}} = \frac{5}{4}\).

Vì \(\frac{{DE}}{{RS}} \ne \frac{{EF}}{{ST}}\) nên hai tam giác \(DEF\) và \(SRT\) không đồng dạng với nhau.

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

- Xét tam giác ABC có, NA=NB, MA=MC

=> NM là đường trung bình của tam giác ABC

=> NM // BC, \(NM = \frac{1}{2}AB\)

- Xét tam giác GMN và tam giác GBC có NM // BC => ΔGMN ∽ ΔGBC 

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Xét tam giác vuông \(PQR\) có:

\(\widehat P + \widehat Q + \widehat R = 180^\circ  \Leftrightarrow \widehat P + 90^\circ  + 42^\circ  = 180^\circ  \Rightarrow \widehat P = 180^\circ  - 90^\circ  - 42^\circ  = 48^\circ \)

Xét tam giác vuông \(UVT\) có:

\(U{V^2} = U{T^2} + V{T^2} \Leftrightarrow {6^2} = U{T^2} + {4^2} \Rightarrow U{T^2} = {6^2} - {4^2} = 20 \Rightarrow UT = 2\sqrt 5 \)

Xét tam giác vuông \(DEF\) có:

\(E{F^2} = D{E^2} + D{F^2} \Leftrightarrow E{F^2} = {9^2} + {12^2} \Rightarrow E{F^2} = 225 \Rightarrow EF = 15\)

Xét tam giác vuông \(MNK\) có:

\(K{N^2} = K{M^2} + M{N^2} \Leftrightarrow {9^2} = K{M^2} + {6^2} \Rightarrow K{M^2} = {9^2} - {6^2} = 45 \Rightarrow KM = 3\sqrt 5 \)

Xét tam giác vuông \(IGH\) có:

\(I{H^2} = H{G^2} + I{G^2} \Leftrightarrow I{H^2} = 7,{5^2} + {10^2} \Rightarrow I{H^2} = 156,25 \Rightarrow IH = 12,5\)

- Xét \(\Delta ABC\) và \(\Delta QPR\) có:

\(\widehat B = \widehat P = 48^\circ \) (chứng minh trên)

\(\widehat A = \widehat Q = 90^\circ \)

Do đó, \(\Delta ABC\backsim\Delta QPR\) (g.g)

- Xét \(\Delta UTV\) và \(\Delta KMN\) có:

\(\widehat T = \widehat M = 90^\circ \)

\(\frac{{UT}}{{KM}} = \frac{{2\sqrt 5 }}{{3\sqrt 5 }} = \frac{2}{3};\frac{{VT}}{{MN}} = \frac{4}{6} = \frac{2}{3}\)

Do đó, \(\Delta UTV\backsim\Delta KMN\) (c.g.c)

- Xét \(\Delta DEF\) và \(\Delta GHI\) có:

\(\widehat D = \widehat G = 90^\circ \)

\(\frac{{HG}}{{DE}} = \frac{{7,5}}{9} = \frac{5}{6};\frac{{IG}}{{DF}} = \frac{{10}}{{12}} = \frac{5}{6}\)

Do đó, \(\Delta DEF\backsim\Delta GHI\) (c.g.c).

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Ta có AD = BD và D ∈ AB nên D là trung điểm của AB;

AE = EC và E ∈ AC nên E là trung điểm của AC.

Xét tam giác ABC có D, E lần lượt là trung điểm của AB và AC, theo định lí Thalès đảo, ta suy ra DE // BC (đpcm).