Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:
1/2*2<1/1*2)vì 2*2>1*2).
1/3*3<1/2*3(vì 3*3>2*3).
...
1/8*8<1/7*8(vì 8*8>7*8).
=>1/2*2+1/3*3+1/4*4+...+1/8*8<1/1*2+1/2*3+1/3*4+...+1/7*8.
=>B<1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8.
=>B<1-1/8.
=>B<7/8.
Mà 7/8<1.
=>B<1.
Vậy B<1(đpcm).
Ta có: \(n.n!=\left(n+1\right).n!-1.n!=\left(n+1\right)!-n!\)
Suy ra \(A=1+1.1!+2.2!+...+10000.10000!\)
\(=1+2!-1!+3!-2!+...+10001!-10000!\)
\(=10001!\)
\(S=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+...+\frac{1}{20.20}\)
Ta có: \(\frac{1}{2}-\frac{1}{3}>\frac{1}{3.3}>\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{3}-\frac{1}{4}>\frac{1}{4.4}>\frac{1}{4}-\frac{1}{5}\)
\(\frac{1}{4}-\frac{1}{5}>\frac{1}{5.5}>\frac{1}{5}-\frac{1}{6}\)
...................................
\(\frac{1}{19}-\frac{1}{20}>\frac{1}{20.20}>\frac{1}{20}-\frac{1}{21}\)
Cộng theo vế ta được:
\(\frac{1}{2}-\frac{1}{20}>S>\frac{1}{3}-\frac{1}{21}\)\(\Rightarrow\)\(\frac{1}{2}>S>\frac{1}{4}\)
\(2\cdot2=2^2=4\)
\(3\cdot3=3^2=9\)
\(4\cdot4=4^2=16\)
\(5\cdot5=5^2=25\)
A=1x2+2x3+3x4+...+49x50
3A= 3(1.2+2.3+3.4+...+49.50)
3A= 1.2.3+2.3.3+3.4.3+...+49.50.3
3A= 1.2.(3-0)+2.3(4-1)+3.4(5-2)+...+49.50.(51-48)
3A= 0.1.2-1.2.3+1.2.3-2.3.4+2.3.4-3.4.5+...+48.49.50-49.50.51
3A= 49.50.51
A= 49.50.51/3=41650
B=1x3+3x5+5x7+...+99x101
B=1/1.3 +1/3.5 +...+1/99.101
2B=2/1.3 + 2/3.5 +...+2/99.101
2B=1-1/3+1/3-1/5+...+1/99-1/101
2B=1-1/101
2B=100/101
B=100/101:2=100/202
S5=5x5-(4x4-(3x3-(2x2-1x1)))
S2011=2001x2001-(2000x2000-(1999x1999-(....)))
Ta có:
1/5×5 < 1/4×5
1/6×6 < 1/5×6
1/7×7 < 1/6×7
.........
1/100×100 < 1/99×100
=> 1/5×5 + 1/6×6 + 1/7×7 +.....+ 1/100×100 < 1/4×5 + 1/5×6 + 1/6×7 +.....+ 1/99×100
= 1/4-1/5 + 1/5-1/6 + 1/6-1/7 +......+ 1/99-1/100
= 1/4-1/100 < 1/4
=> 1/5×5 + 1/6×6+1/7×7 +...+1/100×100<1/4 (1)
Lại có:
1/5×5 > 1/6×7
1/6×6 > 1/7×8
1/7×7 > 1/8×9
........
1/100×100 > 1/101×102
=> 1/5×5 + 1/6×6 + 1/7×7 +.....+ 1/100×100 > 1/5×6 + 1/6×7 + 1/7×8 +.....+1/100×101
= 1/5-1/6 + 1/6-1/7 + 1/7-1/8 +.....+ 1/100 - 1/101
= 1/5 - 1/101 > 1/5 - 1/30 = 1/6
=> 1/5×5 + 1/6×6 +1/7×7 +.....+ 1/100×100>1/6 (2)
Từ (1) và (2)
=> 1/6 < 1/5×5 +1/6×6+ 1/7×7 +...+1/100×100<1/4
Đặt \(A=\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{100.100}\)
Có \(\frac{1}{5.5}< \frac{1}{4.5};\frac{1}{6.6}< \frac{1}{5.6};...;\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)(1)
Lại có :\(\frac{1}{5.5}>\frac{1}{5.6};\frac{1}{6.6}>\frac{1}{6.7};...;\frac{1}{100.100}>\frac{1}{100.101}\)
\(\Rightarrow A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\left(2\right)\)
Từ (1) và (2) \(\RightarrowĐCCM\)
ta đặt vế trái là A ta có:
A=1/2.2 .(1+1/2.2+1/3.3+1/4.4+...+1/50.50)
A< 1/2.2.(1+1/1.2+1/2.3+1/3.4+1/4.5+...+1/49.50)
A< 1/2.2.(1+1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+....+1/49-1/50)
A< 1/2.2.(1+1-150)
A< 1/2.2.99/50
A< 1/4.99/50
A< 99/200<100/200=1/2
=>A<1/2
6x6=30
Như vậy thì 6.6=30